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Abstract—Problems with the correctness and completeness
of environmental assumptions contribute to many accidents
in safety-critical systems. The problem is exacerbated when
products are modified in new releases or in new products of
a product line. In such cases existing sets of environmental as-
sumptions are often carried forward without sufficiently rigorous
analysis. This paper describes a new technique that exploits
the traceability required by many certifying bodies to reason
about the likelihood that environmental assumptions are omitted
or incorrectly retained in new products. An analysis of over
150 examples of environmental assumptions in historical systems
informs the approach. In an evaluation on three safety-related
product lines the approach caught all but one of the assumption-
related problems. It also provided clearly defined steps for
mitigating the identified issues. The contribution of the work
is to arm the safety analyst with useful information for assessing
the validity of environmental assumptions for a new product.

Index Terms—environmental assumptions, safety-critical sys-
tems, product lines, software traceability

1. INTRODUCTION

Safety-critical systems pervade our society. In order to
reduce time-to-market and development costs, families of
safety-critical software systems increasingly are developed as
software product lines (SPL). Examples include the software in
pacemaker devices, medical infusion pumps, caretaker robots,
brake-assist systems, and flight-control systems.

However, SPLs also introduce new safety-related risks, such
as the risk that an assumption about the operational environ-
ment of one product will be inaccurate for the operational en-
vironment of a subsequent product. A new feature, a new user,
or a new adjacent system in a subsequent product may result
in the need for new or modified environmental assumptions for
safe operations. We define an environmental assumption to be
a statement about the software systems operational context that
is accepted as true by the developers [57]. This definition is
consistent with common usage on projects and with dictionary
definitions; however, environmental assumptions are also often
referred to as contextual assumptions in both literature and
practice. Finding inaccurate or missing environmental assump-
tions that may have safety-critical impact for a new product
is currently very difficult. This difficulty obstructs the reuse of
safety case elements across the products in a product line.

Teams building safety-critical software products must typi-
cally perform a rigorous hazard analysis to identify risks and
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a set of mitigating, safety-related requirements. Often these
requirements are associated with environmental assumptions
that must hold in the planned operational context. Although it
only makes sense to talk about the safety of an individual prod-
uct, not of an entire product line, prior work has shown that
certain safety analyses (including preliminary hazard analysis
[39], and software failure modes, effects and criticality analysis
(FMECA) [46]) can be performed during the domain engineer-
ing of a product line and efficiently pruned and/or extended
during the application engineering of each product [17], [13].
Safety analysts often construct a formal or informal safety case
providing claims, arguments, and evidence to demonstrate the
safety of the product, typically to a government certification
body. In practice, safety cases are produced from scratch for
each product, with only the assistance of checklists [50], [20].
In this paper we focus on one aspect of reuse pertaining to
the role of assumptions.

Undetected changes in the validity of environmental as-
sumptions cause many failures of safety-critical systems [35],
[25]. Detecting and avoiding the risks associated with changes
to environmental assumptions poses a special problem in
safety-critical product lines. New products often have new
operational environments, but the documented environmental
assumptions used in previous products may be inappropriately
reused rather than updated in the new product. Perhaps the
best known example is the Ariane 5 accident, in which an
assumption made about the maximum horizontal velocity of
the previous product, Ariane 4, did not hold for the subsequent
Ariane 5. As a result, an overflow error occurred and both the
primary and backup guidance systems failed [37], [12].

The 2007 U.S. National Research Council report on soft-
ware for dependable systems highlighted the danger of in-
accurate domain assumptions. It cited as an example the
1993 Airbus case in which the invalid assumption, “lack of
compression always accompanies being airborne” [35] was a
contributing cause to an accident. The report further stated
that “construction of a dependability case might have revealed
that this assumption was invalid,” noting that the dependability
case “will involve reasoning about both the code and the
environmental assumptions.” Dealing with the correctness and
completeness of assumptions in any system, particularly an
evolving or product-line one, is extremely challenging.



We therefore set a realistic research goal of flagging poten-
tial problems in a set of environmental assumptions associated
with a new or modified product in a product line and of propos-
ing practical mitigations. Our approach, which we refer to as
the Assumption Diagnostics and Rationale Process (ADRP)
leverages the trace links required by many certifying bodies
for safety-critical systems [53], [47] augmented by information
retrieval techniques to search for additional undocumented
links [29], [S5]. We exploit these links to reason about the
likelihood that assumptions are missing or incorrectly retained
in the current product under release. ADRP was developed
through evaluating 150 documented assumptions from indus-
trial systems, including cases which contributed to system
failure. Examples are shown in Table I. We describe and
evaluate ADRP using three safety-related product lines for
drone deliveries, search-and-rescue missions, and environmen-
tal monitoring. Each system was developed over a six month
period by a team of graduate level Software Engineering
students. We address two primary research questions:

RQ1: To what extent can ADRP detect potential risks to the
validity of environmental assumptions in a new product?

RQ2: To what extent can ADRP help a human analyst assess
assumption-related risks and reason about mitigations?

The paper is structured as follows. Section II provides addi-
tional background about safety-critical product lines, environ-
mental assumptions, and safety cases. Section III describes the
ADRP diagnostic model and the approach taken to design it.
Section IV describes the experiments and analysis performed
to evaluate ADRP. Finally Sections V through VII describe
threats to validity, related work, and conclusions.

II. BACKGROUND

Many system failures arise from interactions between soft-
ware and aspects of the environment in which it operates. In
safety-critical systems, these failures can contribute to acci-
dents. An accident is an unplanned event that results in death,
injury, illness, loss of property or damage to surroundings
or habitat [39], [55]. The environment is the broader context
of the software to be developed, that is, the problem world,
such as the hardware on which it runs, concurrently execut-
ing software components, physical devices and surroundings,
regulatory dependencies, and user interactions [62], [58], [35].

The problem of flawed environmental assumptions is well
documented. Van Lamsweerde describes its scope as, “Many
reported problems originate in missing, inadequate, inaccurate
or changing assumptions about the environment in which
the software operates [58].” Inadequately handled changes in
environmental assumptions cause many failures and, in safety-
critical systems, have caused or contributed to many accidents.

A software product line (SPL) is a set of software-intensive
systems that share a common set of features and are developed
from a set of core assets in a prescribed way [14], [60],
[51]. A product is typically generated by selecting a set of
alternative and optional features (variabilities) and composing
them with a set of common base features (commonalities).

TABLE I: Environmental Assumption Types with examples
from historical sources. A complete list of the historical as-
sumptions we identified from the literature is available online
at http://tinyurl.com/ASE2017AssumptionSamples.

Physical environment: Expected to hold invariantly regardless
of the system, e.g., “A train is moving iff its physical speed is
non-null” [58].

Operational environment:  Describes the operational
environment surrounding the system, e.g., “There is no
interference from other wireless devices in the vicinity” [45].

Adjacent system: Describes the behavior of adjacent systems
that interact with the system being developed, e.g., “The Sensor
will provide the current temperature to the Thermostat with an
accuracy of +0.1°F” [19].

User interface: Describes users and their behavior, e.g., “The
operator will not enter data faster than X words per minute” [39].

Regulatory: Describes how regulations affect the system or
related components, e.g., “The device meets industrial standards
for electrical safety” [7].

Development process: Describes policies or procedures
impacting the development process and/or operation of the
system, e.g., “The developer knows that transient signals should
be ignored when the spacecraft lander’s legs unfold” [2].

Change in a product line occurs when new features are
introduced for new products and also when individual products
evolve across releases [18]. For product lines, where the opera-
tional environment and intended usage scenarios typically vary
among products, changes to environmental assumptions pose
an especially frequent problem [44]. In safety-critical product
lines the problem of flawed environmental assumptions is
complicated by the desire of developers to reuse environmental
assumptions across products. Distinguishing when this reuse
of assumptions is appropriate is essential to avoid hazards but
is currently an open problem. Our work reported here aims to
provide the safety analyst with an efficient way to check the
reuse of safety-related environmental assumptions in a new
product of a product line.

III. DiagNosTic MODEL

The aim of the ADRP diagnostic model is to identify
potential problems with assumptions that are associated with
new or modified products of a product line. For example,
consider the assumptions, requirements, and classes depicted
in Table Il.a which show that assumption A, is associated with
two Requirements R1 and R2 and indirectly with classes C1,
C2, and C3 in product P1. Table II.b shows the case in which
assumption A is not present in product P2, even though all the
originally associated requirements and classes from P1 remain.
The assumption could have been correctly removed because it
is no longer needed, or incorrectly removed even though it is
still relevant. It also could be the case that the assumption
was replaced by another (possibly similar) assumption. Of
these three scenarios, the second is clearly problematic as the
assumption is still needed, while the third is also problematic
because even though a replacement assumption is provided,
its trace links to the impacted requirements are missing. In an
additional example, shown in Table Il.c, assumption A, and
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TABLE II: Changes in trace dependencies across the baseline
(P1) and a new/modified product (P2).

Sample Trace Slice Description

P1: trace slice showing dependencies of
requirements R1 and R2 on assumption A,
and indirect dependencies of classes
C1-C3.

P2 vs. P1: Assumption A has been
removed in P2 but all other artifacts
dependent upon A in P1 have been
retained. This may indicate that
assumption A has been incorrectly
removed. ADRP uses textual similarity
analysis and structural analysis to search
for an existing replacement assumption.

P3 vs. P1: Assumption A, requirements
R1 and R2, and class C2 are missing from
P2. Classes C1 and C3 are retained.
ADRP checks whether C1 and C3 are
service classes and/or implement other
retained requirements. Depending upon
this analysis ADRP flags A as a
potentially missing assumption with a
medium or high risk.

Artifacts and Links: 0 - - - Pl only, O--- Both PI and P2

much of its original downstream trace slice has been removed
from product P3. Only two classes, C1 and C3 remain. It
is most probable that assumption A is no longer relevant;
however, further inspection is needed to validate this.

The goal of ADRP is two-fold, first to flag errors of inclu-
sion and exclusion without raising false alarms; and secondly,
to provide the analyst with the information they need in order
to determine whether an assumption-related error exists or
not. Two specific types of assumption-related error that are
of interest are incorrectly included and incorrectly excluded
assumptions. ADRP leverages knowledge of assumption use in
previous product(s) as well as in the current product to identify
possible problems. However, two specific sub-cases are outside
the scope of ADRP’s current capabilities. First, ADRP is
not capable of differentiating between correct and incorrect
facts. For example, given a claim by a train manufacturer that
its model X passenger train, traveling at 50 miles per hour,
can stop in 200 feet under perfect conditions, we assume
it to be true; however, we question the relevancy of the
assumption if and when the usage context or the specific
train model changes. Second, some missing assumptions may
represent unknown or even unknowable unknowns [54]. These
are the set of assumptions that neither appeared in a previous
product nor in the domain assets of a product line and are
therefore entirely outside ADRP’s knowledge base. While
ADRP does not fully address these problems, it does draw
attention to scenarios in which they may occur by identifying
assumptions for inspection which have not been included in
a previously certified product. ADRP also draws attention to
new features, and to new combinations of features introduced
into a new product — with the specific aim of encouraging a

systematic analysis that could identify and document relevant
new assumptions for these features.

A. ADRP Design Methodology

We adapted Wieringa’s design science approach [61] to
design ADRP. The process included (1) information gathering
and analysis, (2) design, (3) initial validation and refinement,
(4) user evaluation, and (5) feedback based refinement.

During the information gathering and analysis phase, we
reviewed literature related to the use of assumptions in safety-
critical systems (e.g., [58], [39], [57], [9], [7], [2], [42]) and
case studies containing assumptions and lifecycle artifacts such
as requirements, models, and safety cases. This allowed us to
reason about the impact of assumptions across the software
development lifecycle. We found evidence that different types
of assumptions impacted multiple artifacts including source
code and requirements. During the design phase, we lever-
aged our observations to design ADRP. First we identified
properties of a software product that served as indicators of
assumption-related problems and then defined metrics that
enabled properties to be measured. We also identified evidence
and counter arguments which might be used to support or
refute the diagnosis of assumption related problems. Section
IIT describes these metrics, evidence, and counter arguments.

In the initial validation and refinement phase we tested
ADRP’s logic using examples from the literature (see Table
I) in order to improve ADRP’s design. The design, validation,
and refinement steps were repeated several times until we
were satisfied that ADRP was able to identify the majority of
targeted assumption errors. In the fourth phase of external user
evaluation we conducted a more formal study with external
developers as reported in Section IV. We will execute the final
step of feedback based refinement in our ongoing work.

B. Product Artifacts

Certification guidelines for safety-critical systems prescribe
traceability across a broad suite of artifact types [53], [28],
[4], [3], [48] providing coverage for planning, analyzing,
designing, implementing, verifying, validating, and assuring
the quality of a system. For example, the DO-178C guidelines,
adopted by the US Federal Aviation Authority, specify that
trace links must be created between specific artifact pairs
including software requirements, design, and source code [4].
Requirements traceability is defined as “the ability to describe
and follow the life of a requirement in both a forwards and
backwards direction through periods of ongoing refinement
and iteration” [23].

Safety-critical projects include diverse artifacts and associ-
ated trace links; however, ADRP utilizes a common subset of
artifacts referenced across certification guidelines [4], [3], [48],
and described in literature discussing the role of assumptions
in safety-critical systems. These artifacts, depicted in Figure
1, include product line specifications, safety assets, core im-
plementation artifacts, and documentation. All artifacts used
in this study are available at http://tinyurl.com/ADRP-Data.
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Fig. 1: Software and Safety Artifacts used by ADRP are often
prescribed by certifying bodies and common across product
line definitions. Arcs represent traceability paths.

Assumptions for a product are often documented in the
product’s requirements specification document, consistent
with the recommended requirements engineering practice in
ISO/IEC/IEEE 29148 [34] or the older IEEE Std-830 [33].

Requirements describe the functionality and expected be-
haviour of the system while source files represent the im-
plementation. A trace slice originates with a single artifact
and shows all of its downstream dependencies. ADRP focuses
on trace slices that originate with assumptions and include
dependent requirements and source files.

Product Lines define commonalities, variabilities, dependen-
cies, and constraints. For our study we adopted the Common-
ality and Variability Analysis (CVA) model [60] which doc-
uments commonalities, variabilities, parameters of variation,
and a decision model to configure the individual products.
Safety Assets include a Failure Mode, Effects and Criticality
Analysis (FMECA) generated for the entire product line and
pruned/extended for each new product [17], and a safety case
for each new product requiring it. Safety-related assumptions
are linked to faults in the FMECA, while assumption-related
problems are mapped onto safety cases for analysis purposes.

Supplemental Documentation includes use case specifica-
tions, architectural documents listing adjacent systems, exter-
nal regulations, and procedural documents defining training
and operational processes.

C. Artifact Properties and Metrics

ADRP checks for properties in the artifacts of P1 and P2
in order to assess dependencies of artifacts upon assumption
A in each product. It also identifies the delta between the two
products with respect to assumption A. The properties and their
associated instruments of measurement are used in ADRP’s
diagnostic algorithm and summarized in Table III.

Presence of Assumptions: Different classes of assumption
problems are possible when assumptions appear in specific
combinations of P1 and P2 products. For example, an as-
sumption that is present in P1 but not present in P2 could
represent an incorrectly excluded assumption from P2 but not
an incorrectly included one. Similar logic can be applied to
an assumption that is present in P2. ADRP therefore defines
attributes inP1 and inP2 to represent whether assumption A is

present in P1 and in P2 respectively.

We provide a concrete example for each of the four generic
Assumption Diagnostics (AD) targeted by ADRP. These ex-
amples come from our catalog of assumptions that were
assembled from historical failures and the literature.

AD1 Incorrectly removed assumption: Operational experience
with Unmanned Aerial Vehicles has shown that developers
need to assume that: “The UAV’s camera lens cap will, at
times, be accidentally left on during flight.” Therefore, the
assumption must be retained across all products, and software
must accommodate the error, for example by detecting it and
switching to a backup camera [45].

AD2 Assumption missing for new feature: In the Isolette (a
hospital incubator for infants), the software was developed
under the assumption that “All temperatures will be entered
and displayed in degrees Fahrenheit.” [19]. However, if a
new version supports Celsius, then the original assumption
becomes invalidated and should be replaced by a new one
[19].

AD3 Assumption is incorrectly retained. There was an op-
erational environment assumption that was originally correct
regarding the stopping distance of New York subway trains
which was incorrectly retained when heavier trains with longer
stopping distances were introduced. The false assumption
contributed to several accidents [32]. This type of assumption
was also the cause of the Ariane 5 rocket failure [43].

AD4 Incorrect new assumption. Developers of the Therac 25
radiation therapy machine introduced a new assumption that
the independent protective circuits and mechanical interlocks
used in the previous Therac 20 system were no longer needed
as the software’s monitoring and control of the hardware was
sufficient. This adjacent system assumption was false and
resulted in several fatal accidents [39].

Assumption Properties: ADRP measures two properties
directly from the assumption. First, as our interest is in safety-
critical assumptions we define the boolean attribute S C (safety
critical) to indicate whether an assumption has a trace link to
a failure mode in its FMECA or not. Only assumptions linked
to the FMECA are considered safety-related. Second, each
attribute is assigned a type. As previously shown in Table
I there are six commonly recognized types of assumptions.
ADRP performs custom analysis for assumptions related to
adjacent system assumptions, user interface assumptions, regu-
latory assumptions, and development process assumptions. For
example, if an assumption A is related to an adjacent (external)
system in P1, but that adjacent system is not used in P2,
then it is unsurprising if assumption A is not included in P2.
Similar arguments can be made for actors and user interfaces,
applicable regulations, and training and procedural policies.
Therefore, ADRP is concerned with AssumptionType.

Trace Slice Metrics: As previously depicted in Table II, the
downstream artifacts which depend on an assumption, can be
modeled as a trace slice. In our current version of ADRP we
define a boolean metric REM (i.e. remnant) which is set to
true if even one element of the original trace slice from P1
is retained in the new product. This overly stringent metric is



TABLE III: Properties used by the Assumption Diagnostic and
Rationale Process (ADRP)

Metric | Description
SC Assumption A or any of its directly linked requirements
are traced to a high criticality fault in the FMECA

inP1 | Assumption A exists in product P1, A € P1

inP2 | An assumption with identical ID and identical text to
assumption A in P1 exists in product P2

T1 A is associated with an Adjacent System

T2 A is associated with a user interface

T3 A is associated with an external regulatory code

T4 A is associated with a development or training process

M1 Adjacent system associated with assumption A is retained
(as-is or modified)

M2 All features linked to actor AC are retained.

M3 All features linked to regulation R are retained
REM | At least one requirement or source file from the artifacts
linked to A in P1 has been retained in P2

TABLE IV: Properties for Diagnosing Assumption Problems.

ADI: Incorrectly removed assumption
inPI A = inP2 A...

Adj T1 A SC A (M1 V REM)

Ul T2 A SC A (M2 v REM)

Reg |13 A SC A (M3 vV REM)
Dev T4 A SC
Other | =(TIVT2VT3VT4) A SC A (REM)

AD?2: Missing assumption for new feature

-inPI A = inP2 A...

All Warning issued to analyst when new features are
introduced.

AD3: Incorrectly retained assumption

inPI A inP2

Adj T1 A SC A (=M1 vV =REM)

Ul T2 A SC A (=M2 V —REM)

Reg T3 A SC A (=M3 vV =REM)

Dev T4 A SC

Other |—=(T1vT2VvT3VT4) A SC A (=REM)

AD4: Incorrectly added assumption
= inPI A inP2

Adj T1 A SC A (=M1)

Ul T2 A SC A (=M2)

Reg T3 A SC A (=-M3)
Dev T4 A SC
Other |—(T1VT2VT3VvT4) A SC

used to flag potential problems, while additional information
about the number and properties of remaining artifacts is used
to populate the diagnostic report with information that enables
the analyst to refute or confirm the diagnoses.

Artifact Similarity: ADRP needs to compute the similarity
between assumptions, requirements, and other artifacts, for
example to check whether a new assumption in P2 is textually
similar to one that existed in P1 and therefore could potentially
be serving as its substitute. Such information later will be used
in the generated reports. We utilize the Vector Space Model
(VSM) to compute the similarity between two artifacts such

as a pair of assumptions, or an assumption and a requirement.
VSM is chosen because it computes quickly and has been
shown to perform consistently, to handle both large and small
datasets, and to treat each artifact as an unstructured bag
of words. This makes it appropriate for use across various
artifact types. The VSM algorithm is described in introductory
information retrieval text books [10] and has been broadly used
for trace retrieval purposes [29], [5].

Source Code Analysis ADRP performs static analysis to
identify low-level service classes. For source code written
in Java, C#, etc. we use standard metric analysis tools (e.g.
JHAWK) to compute afferent coupling metrics (fan-in) of the
class. Service classes are not considered as the remaining
artifacts in REM metric.

D. The Diagnostic Algorithm

The properties used to diagnose each of the assumption er-
rors are shown in Table IV. The table was built systematically
as part of the research design process. We include subcases
to differentiate between assumptions associated with adjacent
systems, user interfaces, regulatory codes, development pro-
cesses, as well as assumptions that do not fit any of these
categories (i.e., other). Each row specifies the properties that
must be true in order for that specific diagnosis to be made.
For example, the properties shown in the top content row of
the table specify that if an assumption is associated with an
adjacent system (T1), is safety critical (SC), was included in
P1 but not P2, and either the adjacent system referenced by A
in P1 is still present in P2 or remnants of the A’s previous trace
slice still exist in P2, then we diagnose assumption A to be
incorrectly excluded from P2. Similar logic is applied for each
diagnosis. The entire process for detecting these properties,
given two different versions or products, is fully automated.

E. Implementation

The assumption of the ADRP diagnostic algorithm is that
the set of artifacts shown in Figure 1, and a set of validated
trace links, exist for both products P1 and P2. Trace links
include links between assumptions and requirements, require-
ments and code, and requirements and faults. For experimental
purposes we extracted all artifacts from their project envi-
ronments (i.e., requirements and assumptions from Jira, code
from Github, and faults from Excel), and stored them as csv
formatted text files which are readable by our ADRP tool.
ADRP then imported and parsed all artifacts for products P1
and P2, checked them for properties defined in Table III, and
then automatically generated a list of assumption diagnoses
including a listing of specific artifacts that led to the underlying
properties being detected. The entire process was automated
except for the final step of constructing the assumption reports
(e.g., Figure 2). We created these manually based upon the
listing of assumption violations and their causes produced by
ADRP. We plan to automate this final step in the future.

F. Rationales and Mitigating Steps

Once potential assumption-related problems are detected,
ADRP produces a report designed to aid the safety analyst in



Diagnosis: Missing Assumption
Al: Iris 3DR drones are able to carry a payload weighing up to 400 grams

Information:

A1l is safety-related and categorized as an

Adjacent System assumption .

A1l is associated with adjacent system: 3DR Iris
3DRIrisis presentin P1 but not presentin P2.

Al is linked to FM-E3 in FMECA in P1 which states that :

fl
'
I
'
'
'
'
I
'
i
'
FM-E3: Payload exceeds manufacturer’s limits. H
'

Medium Risk
Adjacent System referenced |
by Al is not presentin P2 |

Evidence that including Al in P2 is correct:

- Assumption Al is missing from product P2 :
- It was associated with adjacent system: 3DR Iris in product P1
- All classes associated with Al in P1 are still present in P2

Evidence that including Al in P2 is problematic:

- The following P2 assumption associated with Hexacopter is very similar to A1: A-30:
“Hexacopter is able to carry a payload weighing up to 1000 grams.” This suggests
that Assumption Al has been replaced.

- All requirements linked to Al in P1 have been removed.

- The adjacent system, (3DR Iris ) associated with Al is not present in P2.

- All source code files linked to Al in P1 are now linked indirectly to A30.

Possible Remediations:

After reading the counter argument, if you think Al should be included in P2 then:
- Consider adding assumption Al to product P2.

If you do add A1, consider reconstructing the following trace links:

- From A1l to requirements SMF-188.

- From A1 to fault FM-E3 in the FMECA

Souce sode files in P1
Sl existin P2

Overview of Change scenario
inissionControfmodels/nventory jara
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" b
—————
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Soutce sode files in P2
butnotinPl
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[Jpronly [Jp2only | |Bothp1andP2

Fig. 2: Diagnosis Rationale Report generated for a low risk
missing assumption. (Note: Additional data not shown here.)

determining whether an assumption-related problem actually
exists. Making this determination is a non-trivial task which
requires human analysis of the assumptions and all of their
dependent artifacts (i.e. requirements, design, and code) in
the original product (P1) and the subsequent one (P2). A
report is produced for all diagnosed assumption problems.
These reports are currently created manually by using the
values of metrics ADRP generates. Such reports are inherently
complex, as analysts must inspect diverse information sources
in order to decide whether a problem diagnosis indicates a real
assumption problem [22].

As depicted in Figure 2, the report currently includes four
main sections: a diagnostic summary, evidence explaining the
problem diagnosis, a counter-argument providing evidence
that the observations are not indicative of a problem, and fi-
nally suggested remediations that could be taken to remedy the
problem if the analyst concurs with the diagnosis. The report
is generated using predefined templates which prescribe text to
be output when diagnostic and supporting properties are found
to be true. Sample reports are at http://tinyurl.com/ADRP-
Data.

Diagnostic Summary The diagnostic summary is presented
in a header section. It uses the properties defined in Table
IV to describe the diagnosis as illustrated in Figure 2. In

this example, ADRP diagnoses a missing assumption and
provides additional contextual information, for example, that
the assumption is Safety-Related and associated with the 3DR
Iris adjacent system.

Evidence The evidence sections of the report convey informa-
tion associated with all detected properties. In our example,
ADREP reports that all classes associated with Al have been
retained in P2 even though Al is missing. This type of
evidence supports the “Missing Assumption” diagnosis. Sim-
ilarly, ADRP reports that it has found a new assumption that
is textually similar to Al. The new assumption (A-30) states
that Hexacopter is able to carry a payload weighing up to 1000
grams. This provides possible evidence that Assumption Al
was correctly removed and has been replaced.” The templates
for generating each argument were produced as a result of our
research design process.

Warning level Finally, each problem diagnosis is labeled as
Medium or High risk. Medium-risk diagnoses are made when
assumptions’ references (e.g., adjacent systems or regulations)
have been removed entirely even though dependent require-
ments and/or source code are retained. All other cases are
marked as High Risk.

Visual Overview The report displays a visual summary of
the assumption’s role in P1 and P2 generated automatically
by ADRP using GraphVis [21].

Appendix Finally, ADRP includes supplemental data to aug-
ment each of the evidence snippets. This may include relevant
requirements, source code, and/or design artifacts referenced
by the ADRP reports. This data appears as additional pages
in the Diagnostic report and is not shown in Fig. 2.

IV. EvaLuaTtioN

We evaluated our two research questions against products
for three different cyber physical systems (CPS) as depicted
in Table V. We established the criterion that each of the
projects in our evaluation would include a hazard analysis,
requirements, assumptions, source code and/or detailed class-
level design artifacts [53] as these are common across safety-
critical products. Further, each CPS needed multiple products
with artifacts for each product. Because such datasets are not
currently available in the public domain, we recruited Pro-
fessional Masters Students enrolled in a six-month Graduate
Software Engineering Capstone course at DePaul University
to build such systems. While the data sets are not from
industrial projects, 90% of the graduate students were currently
working full-time in the IT industry. Each CPS was developed
using diverse sensors, actuators, programming languages, and
frameworks, and the resulting products were non-trivial and
fully executable. Metadata describing the artifacts for each
product’s baseline are provided in Table VI. For example, the
baseline (i.e. P1) of MedFleet, our largest data set, included
436 unique source files, 78 requirements, 24 assumptions,
and over 1,725 trace links. These data sets are quite large
in comparison to the 15 data sets publicly shared by the The
Center of Excellence for Software Traceabilty (CoEST) [1]-
all of which have been used extensively on numerous research



TABLE V: Products used in ADRP’s evaluation. P1 serves as a baseline, while P2-P4 represent subsequent products.

MedFleet (MF)

Search & Rescue (SR)

Environment (ENV)

P1 Fleet of Iris 3DR drones delivers medical
Base- |supplies. Aid requests received via a mobile
line |app. Mission control processes tickets and
plans routes. Ground station manages drones

Manages search-and-rescue missions.
Rescuers monitored via health sensors.
Current location shown on real-time map.
Directives transmitted to rescuers via a
in flight. Interactive map shows drone location | wrist display.

Monitors environmental pollutants
using crowd-sourced mobile sensors.
Data is streamed to a central server.
Local pollution levels displayed on a
map in a mobile app.

P2 Hexacopters replace Iris 3DR for longer
flights and heavier payloads, Deliveries

History Logging features added. Voice
commands added (for firefighters working
exceed max payload distributed across tickets. |in low visibility conditions

Network of fixed position health
sensors integrated into system

P3 Improved accuracy for identifying requester
location through use of interactive map.
Drone base stations elevated above tree line.

New speed monitor feature. All terrain
vehicles (ATV) replace human-on-foot.
Impacts range and velocity of search.

Network of fixed position health
sensors integrated into system.

P4 Supplies ordered from medical clinic.
Bio-hazardous materials. No mobile app.

Use different types of alerts corresponding
to different situations.

A new version is released for blind
users.

TABLE VI: Products used in the evaluation

Files per Product

Software Artifacts MF | SR ENV
Requirements 78 35 20
Assumptions 24 19 18
FMECA Failures 13 18 9
Product Line Commonalities 13 15 10
(PL) Variabilities 12 9 12
Source Code Java/C# 78 198 17
Java Script 80 18 33
XML 57 87 25
MongoDB/Waspmote 221 |0 21
Trace Links Assump-Reqs 77 38 41
FMECA-Reqs 18 23 11
PL Common/Vars)-Reqs | 101 30 26
Source Code-Reqs 1,529 | 1299 | 113

papers (e.g., [26]) but lack the diversity of artifacts needed
for our study. As an additional contribution of this paper, we
release the data sets and ADRP source code for replication
and reuse at http://tinyurl.com/ADRP-Data.

A. RQI: Diagnosing Assumption-Related Problems

The first study addresses RQ1: “To what extent can ADRP
detect potential risks to the validity of environmental assump-
tions in a new product?”

1) Study Design: Three products, each containing a unique
combination of features, were created for each CPS. All
ADRP properties used to diagnose assumption problems are
applicable at both the source-code and the design level. As
reasoning about environmental assumptions ideally takes place
when design-level decisions are being made, for experimental
purposes we applied ADRP at the design-level. Product P1
therefore represents a fully-functioning, executable product
(i.e. the existing baseline), whereas Products P2, P3, and P4
include requirements, assumptions, FMECA, and design-level
artifacts representing classes and their operations.

As a result of creating new products, several changes were
made to assumptions including removing, replacing, adding,
and modifying them. For experimental evaluation purposes, we
injected several assumption-related errors representative of the
change-related assumption problems that we had previously
collected from real-world historical accidents and accounts in

the literature. These included (AD1) incorrectly removing as-
sumptions that should have been retained, (AD2) failing to add
new assumptions that should have been added for new features,
(AD3) retaining assumptions that should have been removed,
and (AD4) incorrectly adding unnecessary assumptions to new
products. For example, in the Search and Rescue product, the
assumption that “Android hardware will have location services
and cellular network turned on” was incorrectly removed from
P2 even though location services and cellular network were
still used. MedFleet’s P2 had a missing assumption because
it replaced the 3DR Iris with a HexaCopter and introduced a
corresponding new requirement that “When the total weight of
payload exceeds allowed maximum, the payload must be split
into two or more bundles and dispatched on separate drones,”
but introduced no environmental assumption describing the
maximum weight that the HexaCopter could carry. In the
Environment project, P2 replaced human users carrying mobile
collection sensors with fixed-position sensors. However, the
assumption “Collector users have an Android device with
properly working Bluetooth” was incorrectly retained. Any
future functionality dependent upon this assumption would be
problematic. A new assumption stating that “The gas sensors
are not physically damaged” was incorrectly added to the
Environment’s P3 product, even though P3 used radiation
sensors and not gas sensors. ADRP also provides support for
modification errors by treating each one as a deletion followed
by an addition. As an example from the Search & Rescue
product, the assumption stating that “The speed of personnel
with an all-terrain vehicle will not exceed 5 m/s” was modified
to “The speed of personnel without an all-terrain vehicle will
not exceed 5 m/s”. ADRP treats this as a deletion followed by
an addition and merges both actions into a single Incorrectly
Modified diagnosis.

An answer set was systematically created for each product
as follows. All safety-critical assumptions that were added,
removed, or modified correctly as part of the product devel-
opment process were marked as “not a problem”. All safety-
critical assumptions modified as a result of the error-injection
process were marked according to the type of error introduced.
ADRP was then run for products P2, P3, and P4 against
their respective P1 baselines. The diagnostic results were then



TABLE VII: RQI1:Results showing Actual versus Diagnosed problems across nine products

MedFleet Search & Rescue Environment
FN TP ' TN FP [FN TP ' TN ' FP [FN : TP TN | FP Legend
ADI: Incorrectly Removed Assumption 0O +11:4 7 [0 5 0 1 |0 4 4 1] FN: False Negative (1)
AD2: Missing Assumption for new Feature [0 '3 '0 !0 [0 '0 !0 !0 [O !I 'O 'O TP: True Positive (38)
AD3: Incorrectly Retained Assumption 0O 16 129 1 0 12 126 ,0 0 3 128 ;2 TN: True Negative (106)
AD4: Incorrectly Added Assumption 1 71 14 70 [0 71T 75 70 [0 1T 76 10 FP: False Positive (12)
Totals T 721737 8 [0 +8 31 :1 [0 9 38 13
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Fig. 3: RQ1: 90.65% of ADRP’s classifications were correct.
There was one false negative (i.e. 0.72%). The remaining
diagnoses (i.e., 8.63%) were false positives.

compared against the established answer set. Table VII shows
the coverage of the four assumption diagnostics for all three
products in each data set. As depicted in the table (i.e. the sum
of the true positive and false negatives in each row), the data
sets included 20 cases of incorrectly removed assumptions, 4
cases of missing assumptions for new functionality, 11 cases
of incorrectly retained functions, and 4 cases of incorrectly
added assumptions.

2) Results: We report results for each of the four problem
diagnoses (i.e. AD1, AD2, AD3, and AD4) in Table VIIL.
Results show that 38 out of 39 problem cases were correctly
diagnosed; however, ADRP also diagnosed 13 additional cases
(False Positives). There was only one case in which an actual
problem was missed. This occurred for MedFleet where a
new assumption was added and associated with an adjacent
system. However, the assumption was not needed and was
irrelevant. It was not connected via trace links to requirements
or code in the product, and should have been diagnosed as
incorrectly added. As a result of this missed diagnosis, and
following the research-design methodology step of ‘feedback
and refinement’ we have added this scenario to ADRP’s logic
so that such cases will be classified as potential incorrectly
added assumption errors in the future. We can now address
RQ1 and state that in our experiment ADRP’s classification
system successfully diagnosed 97% of the injected assumption
errors at a precision of 75%.

B. RQ2: User Evaluation of Diagnostic Reports

The second study addresses RQ2: “To what extent can
ADRP help a human analyst assess assumption-related risks
and reason about mitigations?”’

1) Study Design: We designed a qualitative study that
approximately parallels the intended usage scenario of ADRP.
The study design was inspired in part by Holzmann’s previous
evaluation of a code review tool for safety-critical systems
[31]. In our experiment, the user, standing in for the safety
analyst, was presented with parts of the ADRP report showing

a diagnosis of an assumption-related problem, and evidence
supporting and countering the diagnosis. We constructed eight
individual reports for the MedFleet system. The reports con-
tained five diagnoses of missing assumptions (3 correct and 2
false), and three diagnoses of incorrectly included assumptions
(1 correct and 2 false). We established this ground truth by
carefully examining each diagnosis and carefully inspecting
the project artifacts and features.

Five study participants were recruited. One was a full-time
software engineer with safety experience, and the other four
were graduate computer science students. One of these stu-
dents had played an integral role in developing the MedFleet
project and assumed the role of internal safety assessor, while
the others assumed the role of external safety assessor. Each
session started with a 30 minute presentation on the MedFleet
system, its interactions with adjacent systems, software arti-
facts used by ADRP, and the role of assumptions in building
safety critical systems. Participants were then presented with
eight ADRP reports, asked to confirm or refute the diagnoses,
state their confidence in their decision, assess the quality
and completeness of the information provided in the report
for confirming or refuting the diagnosis, and explain their
decisions. Users could also respond as uncertain, or claim
that a different problem existed from the diagnosed one.

2) Results: Table VIII summarizes the diagnostic reports
and decisions that users made with respect to the ground
truth. For example, we see that three of the reports diagnosed
ADI; however, only two were correct and the other was a
‘No Problem’. The columns shown under ‘Analysts’ decision’
depict the response provided by the user. As there are 5
users, the numbers in each row sum to a multiple of five
(i.e. 5 x Correct Diagnosis Count). For ADI, five of the
analysts agreed with the AD1 diagnosis; one said there was
no problem; 2 claimed there was a different problem (which
we discuss shortly); and 2 were uncertain. In the case of AD2
and AD4, all users successfully accepted the correct diagnoses
and rejected the incorrect ones as not being AD2 or AD4
respectively. However, there was less agreement about the four
‘No Problem’ cases, all of which were presented as specific
problems (i.e. as diagnoses of AD1-AD4). Of 20 decisions
(i.e. 4 cases X 5 users), 3 were marked as ADI errors, 1 as a
AD3 error, 3 as AD4 errors, 3 as uncertain, and only half (i.e.
10) were correctly recognized as ‘No Problem’ scenarios. We
now discuss two of thecontroversial diagnoses as they provide
more insights into the strengths and weaknesses of ADRP.

In one case ADRP diagnosed a missing assumption of
“A9: The drone will only operate in areas which allow for
unobstructed vertical takeoff and landing.” The assumption



was in P1 but not present in a new product P2 in which drones
only land on elevated base stations. The assumption had been
removed because obstructions from trees and buildings were
considered no longer relevant. One participant stated that there
was no problem in removing the assumption, and three stated
that the assumption should not have been removed. All three
participants who disputed the removal of the assumption stated
that even though the base station was now elevated to avoid
trees, other obstacles might get in the drone’s way and that
a replacement assumption (or even Assumption A9) was still
needed. Their response highlights the kind of thought process
that ADRP makes possible by drawing attention to changes in
the system which potentially impact assumptions.

In general, we observed that raising assumption-related
issues caused our analysts to not only think about whether
the assumptions were correctly or incorrectly included in the
product, but also to consider their correctness. For example,
given a new feature that attached a locator beacon to each
drone and the associated assumption “A40: The locator beacon
can broadcast reliably over a distance of 400 feet” one of our
participants looked up the manufacturer’s product information
and discovered that the actual claim was that the beacon would
broadcast over a “range of up to 400ft (122m) in clear line of
sight. As a result, he marked the assumption as inappropriate
— even though other participants accepted it.

In 50% of the reviews, users were very confident in their
decisions, while in 37% they were somewhat confident, and
in 12.5% they had low confidence. In 68% of the reviews they
claimed that no additional information was needed and in the
remaining 32% they stated that some additional information
was needed. In general, the cases where additional information
was needed reflected the users’ desire to understand more
about the context of the system and information about other
potentially relevant assumptions. We also observed that our
internal safety assessor took almost three times as long to
complete the study as the external assessors (2 hours versus
45 minutes), inspected artifacts at a more detailed level, used
external resources to check claims on adjacent systems, and
was more likely to propose modifications to assumptions than
the external assessors. This suggests that the supplemental
information provided in the ADRP reports is most useful to
safety analysts with more knowledge of the system.

We now address RQ2 based on the findings from this
study. We conclude that while there was relatively strong
consensus both the users and also between the users and
ADRP’s diagnoses, the primary benefit from ADRP came from
presenting diagnostic information to the users which they then
used to reason about the assumptions in the new system.

3) ADRP Usage Scenarios: In Fig. 4 we illustrate a po-
tential, practical usage scenario for ADRP, namely guiding
a safety analyst to the parts of a new product or version’s
safety case affected by a change to the assumptions. The safety
analyst here works within an organization to incrementally
construct and analyze the safety case for a new MedFleet
product as the system is developed. Fig. 4 shows part of the
safety case for PI, based on the Goal Structuring Notation

S1: Argument over
mitigation of hazards

G1: Hazard FM-D1is
adequately mitigated

L

G2: GPS coordinates G3: GPS G4: Communication
are acceptably close coordinates were with GPS functions
to actual position calibrated at launch as intended

C1: Hazard FM-D1 means that
GPS coordinates fail to reflect
actual position of drone

C2: Drone
operates in US
A1: GPS accuracy on
Android phone in the g% -----=------=-=----5
B P 8 :A Possible incorrect
averages 8 meters | use of Assumption. ' !
H More info | S:Strategy G: Goal C:Context A:Assumption |

Fig. 4: Safety Case fragment showing ADRP usage scenario

(GSN) notation [27], [36], [16]. This piece of the safety case
argues that the hazard FM-D1, “GPS coordinates fail to reflect
actual position of drone,” is adequately mitigated when the
three subgoals G2, G3, and G4 are met, given the assumption
Al and the operational context C2.

We now consider the use case in which the safety analyst
is constructing the safety case for MedFleet’s new P3. P3 is
similar to P1 and also will fly only in the US, but P3 has a
new feature — an interactive map. If the safety case for P3
incorrectly omits the assumption Al (shaded in gray in Fig.
4), ADRP will report that A1 may be missing, which guides the
analyst to investigate whether Al should be added to P3 and
used in P3’s safety case. On the other hand, if we suppose that
P3 is being developed for sale in a country with poorer GPS
coverage than Al asserts but that P3’s safety case mistakenly
retains A1, ADRP will catch this. It will report that A1 may be
inappropriate, which guides the analyst to consider whether
Al should be deleted from P3 and not used in P3’s safety case.
In both cases ADRP could be used to map the problematic
assumption to the safety-case element affected by it.

V. THREATS TO VALIDITY

There are several potential threats to validity. First, to
address the threat that ADRP would not provide sufficient
coverage of assumption-related problems we conducted an
in-depth study of problems that occurred in the real-world
and which were reported in historical documents. ADRP was
designed to detect these types of problems.

Second, the CPS products we used for our study were
created by graduate students. However, the projects were non-
trivially sized, used diverse programming languages, archi-
tectural frameworks and platforms, and the majority of team
members were currently employed in the IT industry. Environ-
mental assumptions were identified throughout the develop-
ment process and included claims made by the manufacturers
of the devices used in each application. The assumption-related
problems that were injected into our products all trace back
to categories of errors which we observed in the real world
examples. Due to time constraints, the graduate teams were
only able to deliver one viable executable project each, and so
subsequent products were constructed by researchers. All of
the ADRP techniques are extensible to larger systems. While
we cannot claim generalizability across all types of safety-
critical systems, our results suggest that ADRP can be effective



TABLE VIII: Analysts’ decisions versus actual assumption problems based on the ground truth behind each diagnosis.

Number of Diagnostics Analysts’ decision
Ground Truth Generated | Correct AD1|AD2|AD3|AD4|NP|Diff. Prob.|Uncertain
Exclusion |AD1:Incorrectly Removed Assumption 3 2 5 0 0 0 |1 2 2
Error AD2:Missing Assumption for New Feature |2 1 0 5 0 010 0 0
Inclusion |AD3:Incorrectly Retained Assumption 0 0 0 0 0 010 0 0
Error AD4:Incorrectly Added Assumption 3 1 0 0 0 510 0 0
NP: No Problem 0 4 3 0 1 3 110 0 3

for flagging assumption-related errors and can provide users
with information they need to evaluate possible problems.
Third, in order to address RQ2 we engaged students as
proxies for internal and external safety analysts. Only one was
an original developer of the product and only one had external
safety experience. The behavior of the other three is likely to
differ from experts experienced in performing safety analysis.
While the study provided invaluable insights into the use of
ADRP to identify and describe assumption related problems,
such controlled experiments cannot replace actual industrial
usage. However, this type of study is a critical precursor to
designing and evaluating an industrial strength solution.
Finally, the artifacts used by ADRP are likely to be present
in most safety-critical systems; however, they may be modeled
in different ways. For example the hazard analysis might be
conducted using fault tree analysis instead of FMECA. While
we do not envision any problems in integrating different styles
or configurations of artifacts, we have not yet evaluated this.

VI. RELATED WORK

While much prior work on validating environmental as-
sumptions has been in the area of formal modeling of require-
ments [62], [58], it is essential to develop better techniques
to support safety analysts’ work on projects without formal
modeling. Recent work incorporates more information about
environmental assumptions into safety cases but, as Graydon
notes, the documentation of assumptions and context is still
informal and has some ambiguity [24]. Handling assumptions
in new or changed products is an on-going problem in practice.
For example, Nair et al. found safety-related assumptions
across the automotive, aviation, medical, and railway domains
[49]. Weiss and Leveson presented the risks of reusing safety-
critical software in a different environment [41], and Leve-
son described technical and organizational approaches to not
violating assumptions as a safety-critical system and/or its
environment change [39], [40]. Automatically flagging poten-
tial assumption problems, as we propose here, is a necessary
next step. In closely related work De la Vara et al. surveyed
safety analysts and found that most safety-critical systems had
regular modifications requiring safety analysts to understand
the impact on safety evidence [15]. This confirmed the need
for improved support in practice for updating safety artifacts
when software changes. Our work focuses on automatically
detecting problematic assumptions, a historically troublesome
type of safety artifacts, when change occurs.

Some recent results on the reuse of safety cases address as-
sumptions, although that is not their focus. Most interestingly,
Kokaly et al. described a model management framework for

reusing portions of an assurance case when a system’s design
evolves [38]. For product line safety cases, de Oliveira et al.
recorded information about the operational environments in
the safety case to support reuse [16].

In regard to traceability for safety-critical systems, Briand
et. al used trace slices between safety requirements and SysML
design models to evaluate design conformance [8]. Hill and
Tilley developed a database schema for tracing among safety
artifacts [30]. Rahimi documented patterns of changes among
artifacts in a safety-critical system and proposed work to
automate the evolution of trace links [52]. Sanchez et al.
described a traceability metamodel and techniques for model-
driven development of safety-critical systems [56].

Several studies have sought to improve automated support
for change management. Borg et al. conducted a series of
interviews and identified the need for better tools to help
maintain traceability information when software changes in
complex systems [6]. Castro et al., identified the need for
tools that can integrate information used by both requirements
engineers and safety engineers in order to maintain traceability
links among these artifacts [59]. Charrada et al. proposed tool
support to highlight potentially impacted parts of a require-
ments specification when code changes [11]. In contrast, we
focus on automating the diagnosis of potentially problematic
environmental assumptions for a new or changed product.

VII. CoNCLUSION

Safety analysts have difficulty determining when an envi-
ronmental assumption needed for one product or release is
inappropriate or missing for a subsequent, related product or
release. Such assumption problems have contributed to many
accidents. The work reported here shows the benefit of au-
tomating the identification of four common risks to assumption
validity in a new product. The ADRP technique described
in this paper uses trace links required by certifying bodies
for safety-critical systems, together with information retrieval
searches for additional links, to provide the safety analyst with
insights into assumptions that may be missing or incorrectly
retained in the next product. Results from evaluation of ADRP
show that it consistently diagnosed problematic assumptions
across three safety-critical product lines and that ADRP’s
results, evidence, and suggested remediations helped users
correctly assess the assumptions.
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