
TiQi: A Natural Language Interface for
Querying Software Project Data

Jinfeng Lin, Yalin Liu, Jin Guo, Jane Cleland-Huang
University of Notre Dame

South Bend, IN, USA
Email: jlin6,JaneClelandHuang@nd.edu

William Goss, Wenchuang Liu, Sugandha Lohar,
Natawut Monaikul, Alex Rasin

School of Computing
DePaul University, Chicago, USA.

Email: arasin@cdm.depaul.edu

Abstract—Software projects produce large quantities of data
such as feature requests, requirements, design artifacts, source
code, tests, safety cases, release plans, and bug reports. If
leveraged effectively, this data can be used to provide project
intelligence that supports diverse software engineering activities
such as release planning, impact analysis, and software analytics.
However, project stakeholders often lack skills to formulate
complex queries needed to retrieve, manipulate, and display
the data in meaningful ways. To address these challenges we
introduce TiQi, a natural language interface, which allows users
to express software-related queries verbally or written in natural
language. TiQi is a web-based tool. It visualizes available project
data as a prompt to the user, accepts Natural Language (NL)
queries, transforms those queries into SQL, and then executes the
queries against a centralized or distributed database. Raw data
is stored either directly in the database or retrieved dynamically
at runtime from case tools and repositories such as Github and
Jira. The transformed query is visualized back to the user as
SQL and augmented UML, and raw data results are returned.
Our tool demo can be found on YouTube at the following
link:http://tinyurl.com/TIQIDemo.

Keywords-Natural Language Interface, Project Data, Query

I. Introduction

Software and Systems engineering projects accumulate large
amounts of data in the form of requirements, design artifacts,
source code, test cases, feature requests, bug reports, project
plans, burn-down charts, and safety-related assets. These data
artifacts can be connected using trace links - constructed
either manually during the development process or after-the-
fact with the help of information retrieval techniques [3], [4].
If leveraged effectively, project stakeholders can utilize this
data to answer questions such as: “which elements of the
design mitigate safety-related hazards?” or “list all test-cases
written in the past week which test the functionality related to
temperature controls”. Traditionally, such queries have been
executed using query languages such as SQL or XQuery.
However, the queries can become quite complex [12], [11]
and many project stakeholders find them difficult to compose.

NL database solutions have been available since the early
1970s and 80s [19], [20], [6], [2], [18]; however, it is widely
accepted that NL query languages should be customized for
specific domains [14]. To address this problem we have
developed TiQi as a tool for querying software projects. It
is supported by a traceability domain model and algorithms

designed specifically to transform natural language project
queries into executable SQL statements.

Supporting queries that integrate information from multiple
artifact types requires interconnected data sources. Fortunately,
data is becoming increasingly connected. In safety-critical
projects traceability is prescribed across many artifacts by
certifying bodies. Integrated design and development environ-
ments such as Jazz or the Github-Jira bridge capture asso-
ciations between artifacts as a byproduct of the development
process, and products such as Mylyn, TaskTop and Collab-
Net handle the challenges of integrating data across diverse
toolsets. Furthermore, when trace links are not available,
automated tracing techniques can be used to generate usable
trace links upon demand [5], [1].

In this tool demo we present a Natural Language Interface
called TiQi, which accepts both verbal and written natural
language queries targeted at software project data. It then
transforms these queries into executable Structured Query
Language (SQL). The transformed query is visualized back
to the user as simplified SQL and augmented UML, and raw
data results are returned [17], [16].

Preliminary Hazard

- ID
- riskLevel {high..low}
- description

System Req.

- ID
- description

Regulatory
Code

- ID
- description
- relevant

Software Req.

- ID
- description
- type

Acceptance Test

- ID
- name
- result {failed/passed}
- description
- date modified
- date created

Test Log

- ID
- expectedResults
- actualResults
- dateRun
- comments

Code

- ID
- name
- createDate
- version
- source

Unit Test

- ID
- name
- description
- result {failed/passed}
- testDate

Prevents

complies to
derived

from

tests

results

implements

tests

Unit Test Result

- ID
- resultStatus {fail/pass}
- dateRun

results

Fig. 1: A Traceability Information Model (TIM) showing
available artifacts and attributes for querying against.

I’d like to see a list of all preliminary hazards for arm movements which are tested by recent unit tests.

QUERY

[List] preliminary-hazard for arm movement [Join] tested by [Date: the past week] unit-test.
PRE-PROCESSED QUERY

for by that
SYNTACTIC MARKERS TOKENS

LEXICON List Preliminary-Hazard. description

Unit-Test.name

List Preliminary-hazards Arm movements [Date: the past week] unit-test

Acceptance-Test.dateModified

Acceptance-Test.dateCreated

Unit-Test.testDate

Table: Unit-Test

SQL QUERY
SELECT PreliminaryHazard.*
FROM PreliminaryHazard, LINKSystemReq2PreliminaryHazard,
 SystemReq, LINKSoftwareReq2SystemReq, SoftwareReq,
 LINKUMLClass2SoftwareReq, UMLClass, LINKCodeClass2UMLClass,
 UMLCode, LINKUnitTest2CodeClass, UnitTest
WHERE PreliminaryHazard.ID =LINKSystemReq2PreliminaryHazard.TargetID
AND SystemReq.ID = LINKSystemReq2PreliminaryHazard.SourceID
AND SystemReqID.ID = LINKSoftwareReq2SystemReq.TargetID
AND SoftwareReq.ID = LINKSoftwareReq2SystemReq.SourceID

Table:
Preliminary- Hazard

AND SoftwareReq.ID = LINKUMLClass2SoftwareReq.TargetID
AND UMLClass.ID = LINKUMLClass2SoftwareReq.SourceID
AND UMLClass.ID = LINKCodeClass2UMLClass.TargetID
AND UMLCode.ID = LINKCodeClass2UMLClass.SourceID
AND UMLCode.ID = LINKUnitTest2CodeClass.TargetID
AND UnitTest.ID = LINKUnitTest2CodeClass.SourceID
AND UnitTest.testDate >= "03/01/2014"
AND PreliminaryHazard.Description LIKE ‘%arm movement%’;

Fig. 2: An example of the Query Transformation Process in TiQi

II. TiQi Overview

TiQi prompts the user for a NL query by displaying a
Traceability Information Model (TIM), which as depicted in
Figure 1, models artifact types, attributes, analytic functions,
and semantically typed links. Raw data can either be stored
in a centralized database or in native repositories such as Jira
or Github. In the distributed scenario, we store the TIM in
a central location and provide mappings to distributed nodes
capable of accessing and retrieving the data specified in a
specific query. In order to provide up-to-date answers over
distributed heterogeneous software engineering data silos (e.g.,
IBM DOORS, Jira) we have developed a custom H2-based
[15] database prototype. H2 is a lightweight, open-source Java
SQL database with in-memory mode and full JDBC support.
Our database engine therefore natively supports integration
of custom analytic functions and can, through JDBC API,
integrate data sources ranging from Jira to Excel spreadsheets.
However, as the focus of this tool demo is on TiQi’s ability to
transform a natural language query, all examples in this paper
are run against a central repository containing all artifact data.

III. Translation Process

TiQi translates a wide range of NL project-related queries
[10] into executable SQL. We illustrate the multi-step trans-
lation process in Figure 2. First, the Stanford Parser [7] is
used to identify parts of speech and syntactical dependencies.
A section of the parsed query is shown in Figure 3 [13]. A
number of preprocessing tasks are then performed including
identifying and replacing the prelude “I’d like to see a list
of” with [SELECT]. In earlier versions of TiQi, this task was
accomplished by collecting hundreds of typical query phrases
and detecting them in the query; however, the approach was
overly brittle and failed when unusual preludes were used.
We have therefore replaced it with the NLP approach. During

preprocessing, additional tasks such as replacing association
terms such as “which are tested by” with the term [JOIN],
and formatting dates and numbers are also performed.

In the next step, the query is transformed into a set of
syntactic markers and tokens such as preliminary hazards and
unit-test. The goal is then to correctly map each token onto an
artifact name, attribute name, or an attribute value. TiQi does
not limit users’ vocabulary to the artifact and attribute names
depicted in the TIM. It therefore utilizes synonym-like words
and phrases to increase the accepted vocabulary. However,
synonyms must be used judiciously in order to minimize
erroneous mappings. For example, Wordnet defines several
synonyms for the word test including trial and examination,
however the term examine in the query “I’d like to examine
a list of recently added requirements” should not be mapped
to the term tests as this could create an incorrect mapping to
the unit-test case artifact. Further, standard lists of synonyms
fail to include synonym-like terms for Software Engineering
such as: code:java or requirements:specs. We have therefore
developed a domain-specific set of synonym-like words and
phrases associated with common Software Engineering arti-
facts. This list, which we continue to iteratively evolve, was
developed through inspecting and analyzing the terminology
used in over 1,000 sample queries collected during a series of
industry-targeted user studies [9].

As users can express a single NL query in diverse ways,
we developed a set of grammatical patterns to guide detection
of syntactic markers. This approach establishes some indepen-
dence between the extraction process and the exact wording
of the query. For example, given the two queries shown in
Figures 3a and 3b respectively, we apply a rule to identify
restrictions (e.g., adjectives and verbs) that describe a noun.
In both queries we trivially locate the initial noun hazard and
then apply one of our grammatical patterns to search through

(a) Dependency for the example query

(b) Dependency for a mutation of the example query

Fig. 3: A visualization of Dependencies identified by the Stanford Parser for a shortened form of the our example query.

’amod’ and ’acl:relcl’ dependencies in the dependency graph
to identify the complete syntactic marker preliminary hazard.

While TiQi is often able to map a token onto a specific
table and/or attribute; there are other cases in which multiple
mappings are possible. Figure 2 provides an example with the
case of Arm Movements. This phrase does not match a table
or attribute name, but does occur in at least one Unit-Test
case name as well as a preliminary hazard description. TiQi
currently utilizes a set of five disambiguators which are used
to select tables, attributes, and data values. In this example,
the rule of compounding evidence suggests that as the token
Preliminary-hazards is already clearly mapped onto a table
with the same name, the arm movements is more likely to map
to the preliminary hazard table than to the unit-test table. Other
disambiguators prioritize table names and attributes over raw
data matches, and matches against constrained value lists (e.g.
pass—fail) over larger textual descriptions such as source code
files. The disambiguators therefore enable TiQi to identify
the most likely interpretation of the query, but they do not
guarantee a correct match.

IV. Displaying Results

Once TiQi has transformed a query into executable form,
it executes the query and reports results back to the user as
depicted in Figure 4. A series of user studies which explored
various display representations [9] demonstrated the benefits
of providing both visual and textual display of the query. TiQi
therefore displays the subset of the TIM which is relevant
to the query, and displays the artifacts, attributes, and filter
conditions. TiQi also displays a simplified version of the
generated SQL. The primary simplification is achieved through
hiding the joins across the hidden trace matrices. Finally,
retrieved data is depicted in tabular format. This multi-faceted
display enables the user to determine whether the query was
correctly interpreted and also to view its results [9].

V. TiQi Architecture

The current TiQi architecture has three major components
as depicted in Figure 5:
Backend TiQiEngine: The backend Trace Engine is written in
java and utilizes external libraries such as the Stanford parser.
It takes a natural language query and attempts to output a

well-formed SQL statement. If it fails to do so, it reports its
inability to understand the query.
Web-Server: The webserver is written in Java using the Spring
framework. It responds to client requests for artifact data
from the central or distributed database. It also serves as an
intermediary between the web-client and the TiQi engine. In
one typical scenario, the web-server receives a NL query from
the web-client, asks the TiQi engine to transform it, executes
the SQL query against project artifacts, and finally displays
results to the user. The web-server utilizes the GraphViz dots
format to dynamically layout the TIM and to visualize the
query. The generated layout is transformed into JSON and
passed to the front-end client.
Web-Client: The web-client supports interaction with the user.
After the user selects a project, the web-client forwards the
request to the web-server, waits for the JSON representation
of the TIM, and then renders the visual form of the TIM. When
the user formulates an NL query and presses the submit button,
the web-client forwards the request to the trace engine, waits
for the results, and finally displays them in the browser.

These scenarios are illustrated in Figure 4a. The user
has opened one of the sample projects named Isolette. The
project’s TIM has been retrieved and displayed and the user
has clicked on the code artifact to view the raw data. The user
then formulates a query either by activating the microphone
or by typing it into the query field at the bottom of the screen.
The query is processed as previously explained in Section III
and the result is displayed as shown in Figure 4b.

VI. TiQi’s Performance

We report results from an earlier study conducted to eval-
uate TiQi’s performance against two data sets [17]. While
these data sets are relatively small, they demonstrate TiQi’s
capabilities. The Isolette data set included hazards, faults, en-
vironmental assumptions, system requirements, design, code,

TABLE I: SQL queries generated from NL Text

All Queries Correct Incorrect % Correct
Isolette 49 21 70.0%
Easy Clinic 25 15 62.5%

(a) Project artifacts serve as a query prompt

(b) Results are presented in three formats: relevant TIM, simplified SQL, and retrieved data

Fig. 4: Issuing a Query and Displaying results in TiQi’s web-client

test cases, and test results connected through six unique
trace paths and described using 26 unique attributes. The
data was taken from a case study documenting the safety-
critical Isolette system [8]. We collected queries from five
different software engineers (unrelated to our project) and
then augmented them by incorporating a variety of jargon,
dates, times, and negations. This produced a total of 70 natural
language queries. The Easy-Clinic data set included HIPAA-
goals, requirements, design, code, unit and acceptance test
case and a test log connected through six unique trace paths
and described by 17 attributes. The functional requirements,
source code and test cases were taken from the Easy-Clinic

data (available from CoEST.org) with italian terms translated
to English. HIPAA Technical Safeguards were added as goals,
and all other artifacts were created by one of the researchers
in order to have a richer dataset for querying against.

To evaluate TiQi we issued each of the queries and then
reviewed both the generated SQL and the data output when
the SQL was executed. Results were marked as correct or in-
correct, and the numbers of completely correct queries versus
incorrect ones are reported for each dataset as shown in Table
I. Results from this study showed TiQi’s promise. However,
in a subsequent study, when the size of the second dataset
was significantly increased by adding additional records and

Web Client

Web-Server

Displays TIM
Accepts NL Queries

Display Results

Requests raw project data including
TIM schema from database.

Generates TIM layout.
Forwards requests for NL to SQL

translations to Trace Engine.

TiQi Engine
Transforms NL
queries to SQL

TIM
Project Data

GraphVis
Generates
TIM Layout

Stanford
Parser

TIM Results
NL
Query

NL Query

SQL

SchemaRaw
Data

Parsed
Query

Fig. 5: TiQi Architecture with Centralized Repository

TABLE II: Two examples in which TiQi currently fails: (1)
Faults containing the keyword ‘temperature’ were retrieved,
while the ones containing words such as ‘heat’ and ‘thermo-
stat’ are excluded from the answer set, (2) As no ‘low’ severity
faults existed in the data at the time of the query, TiQi failed
to add the condition ‘fault‘.‘Severity‘ = ’low’.

Queries SQL
List any fault
related to
temperature

SELECT ‘fault‘.‘ID‘
FROM ‘fault‘
WHERE ‘fault‘.‘ContributingFault‘
Like ”%temperature%”

List all low
severity faults
which have
pending
requirements

SELECT
‘system requirements‘.‘ID‘,‘fault‘.‘Severity‘
FROM ‘system requirements‘
JOIN ‘fault‘
JOIN ‘hazard‘
WHERE ‘system requirements‘.‘Status‘
LIKE ”pending”

large quantities of unstructured text, accuracy dropped to 48%.
We are therefore working to incrementally improve TiQi in
several ways. For example, we have experimented with the
use of machine learning at several key decision points such
as differentiating between different types of questions. Results
have shown high accuracy yes/no (0.914), negation (0.954),
and aggregation (0.974) and therefore this classification feature
will be integrated into the next TiQi release. A second major
focus is to create a interactive dialog as a mean of solving
ambiguities in queries. Finally, our longer term goal is to
publicly deploy TiQi and to leverage it to interact with users
in order to better understand the categories of questions users
wish to pose. The current version of TiQi is based upon
approximately 1000 queries collected through a series of
surveys [10], [9]

VII. Ongoing Challenges

TiQi is designed to make project data more accessible;
however, it is limited by the underlying domain ontology and
its ability to interpret the intent of the NL query. Table II shows
2 typical errors during the SQL translation. Both of the errors
indicate the fact that the accuracy of translation is associated
with the content and the design of the target databases. While
we are currently working to further improve TiQi’s interpretive
ability in order to improve accuracy, we are also exploring

more interactive solutions based on question and answering.
TiQi is expected to calibarte itself to fit the target database
during the interactions with users.

VIII. Acknowledgments
The work described in this tool demo is partially funded by

NSF grants CCF-0959924 and CCF-1265178.

References
[1] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol. Trustrace: Mining software

repositories to improve the accuracy of requirement traceability links.
IEEE Trans. Software Eng., 39(5):725–741, 2013.

[2] I. Androutsopoulos and G. Ritchie. Database interfaces. In Handbook
of Natural Language Processing, pages 209–240. Marcel Dekker Inc.,
2000.

[3] J. Cleland-Huang, O. Gotel, J. H. Hayes, P. Mäder, and A. Zisman.
Software traceability: trends and future directions. In Proceedings of
the on Future of Software Engineering, FOSE 2014, Hyderabad, India,
May 31 - June 7, 2014, pages 55–69, 2014.

[4] J. Cleland-Huang, O. Gotel, and A. Zisman, editors. Software and
Systems Traceability. Springer, 2012.

[5] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, E. A. Holbrook, S. Vadla-
mudi, and A. April. Requirements tracing on target (retro): improving
software maintenance through traceability recovery. ISSE, 3(3):193–202,
2007.

[6] Y. Kambayashi. An overview of a natural language-assisted database
user interface: Enli. In IFIP Congress, pages 1055–1060, 1986.

[7] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Pro-
ceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1, pages 423–430. Association for Computational
Linguistics, 2003.

[8] D. L. Lempia and S. P. Miller. Requirements engineering management
handbook. National Technical Information Service (NTIS), 1, 2009.

[9] S. Lohar, J. Cleland-Huang, and A. Rasin. Evaluating the interpretation
of natural language trace queries. In M. Daneva and O. Pastor, editors,
Requirements Engineering: Foundation for Software Quality - 22nd
International Working Conference, REFSQ 2016, Gothenburg, Sweden,
March 14-17, 2016, Proceedings, volume 9619 of Lecture Notes in
Computer Science, pages 85–101. Springer, 2016.

[10] S. Lohar, J. Cleland-Huang, A. Rasin, and P. Mäder. Live study:
Collecting natural language trace queries. In Research Method Track,
Requirements Engineering: Foundation for Software Quality (REFSQ
2015), Essen, Germany, March 23, 2015., pages 207–210, 2015.

[11] P. Mäder and J. Cleland-Huang. A visual traceability modeling language.
In MoDELS (1), pages 226–240, 2010.

[12] J. I. Maletic and M. L. Collard. TQL: A query language to support
traceability. In ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, TEFSE@ICSE 2009. Vancouver, BC, Canada, 18
May, 2009, pages 16–20, 2009.

[13] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky. The stanford corenlp natural language processing toolkit.
In ACL (System Demonstrations), pages 55–60, 2014.

[14] P. McFetridge and C. Groeneboer. Novel terms and cooperation in a
natural language interface. In Knowledge Based Computer Systems,
pages 331–340. Springer, 1990.

[15] T. Mueller. H2 database engine, 2006.
[16] P. Pruski, S. Lohar, R. Aquanette, G. Ott, S. Amornborvornwong,

A. Rasin, and J. Cleland-Huang. TiQi: Towards natural language trace
queries. In Requirements Engineering Conference (RE), 2014 IEEE 22nd
International, pages 123–132, Aug 2014.

[17] P. Pruski, S. Lohar, W. Goss, A. Rasin, and J. Cleland-Huang. Tiqi:
answering unstructured natural language trace queries. Requir. Eng.,
20(3):215–232, 2015.

[18] B. Shneiderman and P. Maes. Direct manipulation vs. interface agents.
Interactions, 4(6):42–61, 1997.

[19] C. Thompson, R. Mooney, and L. Tang. Learning to parse natural
language database queries into logical form. Proceedings of the
ICML-97 Workshop on Automata Induction, Grammatical Inference, and
Language Acquisision, 1997.

[20] Y. Vassiliou, M. Jarke, E. Stohr, J. Turner, and N. White. Natural
language for database queries: A laboratory study. MIS Quarterly,
7(4):47–61, 1983.

