
82	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

Speed, Data,
and Ecosystems
The Future
of Software Engineering

Jan Bosch, Chalmers University of Technology

// An evaluation of recent industrial and societal trends

revealed three key factors driving software engineering’s

future: speed, data, and ecosystems. These factors’

implications have led to guidelines for companies to

evolve their software engineering practices. //

AS MARC ANDREESSEN wrote
in 2011, “Software is eating the
world.”1 Industry investment in soft-
ware R&D is increasing,2 and soft-
ware, rather than mechanics and
hardware, now defines a product’s
value.3,4 So, industry is under se-
vere pressure to improve software-
intensive systems’ capabilities to de-
liver on today’s software needs.

I analyzed key industrial and so-
cietal trends related to these devel-
opments. Extrapolating from those
trends, I identified three factors that
are central to software engineer-
ing’s continued progress and thus
have important implications for soft-
ware engineering’s future. Figure 1

summarizes these trends, factors,
and implications.

I conducted this research in con-
junction with the Software Center
(www.software-center.se), a soft-
ware engineering research collabora-
tion among seven companies, includ-
ing Ericsson, Volvo Cars, Grundfos,
Saab, and Jeppesen (part of Boeing),
and five Swedish universities. Thus,
the information is based on signifi-
cant industry experience.

Trends in Industry
and Society
The future is generally difficult to
predict. However, several societal
and technological trends indicate

that certain developments and tran-
sitions will occur, even if it’s not
clear when. Here, I summarize six
trends influencing the evolution of
software engineering practices. The
trends are organized from high level
and societal to more specific and
technological.

The Shifting Nature
of Product Innovation
In the past, especially in the
embedded-systems industry, a sys-
tem’s or product’s mechanical parts
were most often targeted for innova-
tion. By introducing new materials,
presenting alternative designs that re-
duced weight or increased structural
integrity, or adhering to fashionable
designs, companies could differenti-
ate their products. Even if the product
contained electronics and software,
these technologies were considered
secondary and not necessarily central
to the product. The software had to
work but wasn’t viewed as differenti-
ating for the product.

In addition, software develop-
ment was subjugated to mechanical
development, even if the software
could be developed significantly
faster than the mechanical system.

The trend. Now, software is becom-
ing the central differentiator for
many products, whereas mechanics
and hardware (electronics) are rap-
idly becoming commodities. In ad-
dition, the system architecture often
seeks to separate the mechanics and
hardware from the software to al-
low for two largely independent re-
lease processes. So, software can be
updated frequently, both before the
product leaves the factory and after
it’s been deployed to customers. As
part of this trend, customers increas-
ingly expect their product’s software
to evolve.

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 83

The evidence. At the Software Cen-
ter, several companies have under-
gone this transformation. For in-
stance, AB Volvo estimates that
software drives 70 percent of all in-
novation in its trucks. Volvo Cars es-
timates that electronics and software
drive 80 to 90 percent of its innova-
tion. Over the last decade, telecom
company Ericsson’s focus has also
shifted, with more than 80 percent
of its R&D budget dedicated to soft-
ware. A recent Harvard Business
Review article con� rmed this trend,5

as did Valeriy Vyatkin’s state-of-the-
art review showing that the ratio of
software in machinery has doubled
from 20 to 40 percent over the last
decade.4

From Products to Services
Businesses and consumers are in-
creasingly aware of capital expen-
ditures’ limiting effects. Owning
large, expensive items, often funded
by borrowed capital, is expensive
and limits a company’s ability to
rapidly change course when cus-
tomers demand changes. So, many
companies are moving from own-
ing buildings, equipment, and other
capital-intensive items to service ar-
rangements in which they pay a fee
to access the facility or item.

Consumers, especially in this
age of Generation Y, are also shift-
ing their values from owning to
having access to expensive items.
Developments such as the access
economy exploit the fact that many
people own expensive items but
use them for only small amounts
of time each day or week. For in-
stance, the typical car is used less
than an hour per day.

The trend. Many industries, including
automotive and telecommunications,
are fundamentally changing their

business models and thus compa-
nies’ key incentives. This move from
products to services has two implica-
tions. First, the focus changes from
selling as much of a product as possi-
ble to providing as many services as
possible at the accepted quality level.
For example, for a car company be-
ginning to provide mobility services,
the question becomes how to provide
them with as few cars as possible be-
cause the product is now a cost item.
Second, companies have an incen-
tive to maximize their products’ eco-
nomic lives. For example, companies
often deploy new software in prod-
ucts already in the � eld because that
approach is the most cost effective.

The evidence. Besides academic
sources,2,6,7 two industrial exam-
ples illustrate the trend. First, Eric-
sson’s global services unit is grow-
ing faster than its product units, in
terms of revenue and staff.8 Opera-
tors look to access their network as
a service, focusing on customer ac-
quisition and market share growth.
Second, automotive companies ex-
pect that by 2020, between a third
and half of their cars will be used
through service agreements rather
than ownership.

From Technology- to
Customer-Driven Innovation
Technology forms the foundation for
innovation. New technologies enable
new use cases and let consumers ac-
complish their goals in novel ways.
So, companies invest heavily in tech-
nology innovation with the expecta-
tion of being rewarded with product
differentiation that drives sales and
sustains margins.

However, for several industries,
despite using patents and other IP
protection mechanisms, new tech-
nologies tend to become available to
all players at roughly the same time,
as I mentioned before. So, these com-
panies derive little bene� t in terms
of differentiation. As technology-
driven innovation’s bene� ts de-
crease, companies increasingly pri-
oritize customer-driven innovation.9

The trend. Customer-driven innova-
tion involves identifying and meet-
ing new customer needs as well as
better meeting known customer
needs. This requires deep customer
engagement in both qualitative and
quantitative ways. Instrumenting
software systems, both online and
of� ine, to collect customer behavior
data is critical for customer-driven

Shifting nature of innovation

From products to services

Customer-driven innovation

Software size

Need for speed

Playing nice with others

Industry trends Implications for software engineering

B: From planning to experimentation

B: Ecosystem principles intracompany

A: Unprecedented modularity and �exibility
A: Continuous refactoring
A: Autonomy
A: Integral data collection
P: Climbing the stairway to heaven
O: Cross-functional teams
O: Self-management

Key factors

Speed

Data

Ecosystems

FIGURE 1. The trends and factors in� uencing software engineering’s future, and the

implications for business (B), architecture (A), process (P), and organization (O).

84	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

innovation because successful inno-
vations are often developed before
customers even express the needs the
innovation addresses.9

The evidence. Petra Bosch-Sijtsema
and I studied companies that had
adopted new techniques to collect
customer insight as part of product
development.9 This trend is also ev-
ident in how new industry entrants
have disrupted or are disrupting
incumbents. From stalwarts such
as Amazon for retail and Tesla for
automobiles, to Uber for taxi trans-
portation and Airbnb for hospitality,
none of these companies disrupted or
won in their markets by using better
technology than the incumbents. Be-
cause the incumbents better under-
stood their customer bases and had
vastly more resources, they might
have used technology to address
customer needs as well as or better
than these new entrants. However,
the new entrants better understood

customers’ unexpressed needs and
developed innovative approaches to
meet them.

Software Size
For product innovation to move
from mechanics and hardware to
software, new features and function-
ality must be realized through soft-
ware rather than other technologies.
This has obvious implications for
software size, relative and absolute
R&D investment in software, and
other product development aspects.

The trend. Depending on the indus-
try, software’s size in software-in-
tensive systems is increasing on an
order of magnitude every five to 10
years. Industry often underestimates
this growth’s implications. The main
challenge is that a software system
10 times larger than the previous
generation’s requires new architec-
tural approaches; different ways
to organize development; and sig-
nificant modularization of testing,
release, and postdeployment up-
grades. This growth also incurs the
complications of running a larger
R&D organization. To address these
challenges, companies employ ap-
proaches such as modular architec-
tures, IT services, and open source
components.

The evidence. Several studies have
documented software growth in
software-intensive systems. One of
the most illustrative studies is by
Christof Ebert and Capers Jones,

who analyzed this trend for embed-
ded systems.3 Vyatkin came to many
of the same conclusions.4

The Need for Speed
User adoption of new technologies,
products, and solutions is continu-
ously accelerating. Once measured
in years, user adoption has decreased
to months and now weeks and days
over the last decade. For example,
whereas Facebook took 10 months
to reach a million users, the Draw
Something mobile app reached a

million users in just days. With en-
terprise’s “consumerization,” corpo-
rations are also demonstrating this
need for speed, driving toward faster
adoption of new applications, tech-
nologies, and systems.

The trend. Companies today must
respond to new customer needs and
requests at unprecedented speeds,
which requires a level of enterprise-
wide agility that’s often exceedingly
difficult in traditional, hierarchical
organizations. The need for speed
requires companies to pursue dif-
ferent ways to organize, build, and
architect software and software
development.

Particularly in heavily regulated
industries, incumbents often con-
trol their products in ways that don’t
support agility and speed but that
slow everything down. New com-
petitors enter these industries from
the side and work in relatively un-
regulated areas, which lets them in-
novate much more quickly than their
incumbent counterparts. Even when
compliance is required, new en-
trants—lacking the existing players’
legacy—tend to find more resource-
efficient and faster ways to comply.

The evidence. To describe this trend,
Larry Downes and Paul Nunes used
the compelling phrase “big bang
disruption.”10 They presented sev-
eral cases from various industries in
which fast-moving new entrants out-
competed incumbents on price, per-
formance, and user experience.

Playing Nice with Others
No company operates in a vacuum,
but many large organizations’ inter-
nal operations receive orders of mag-
nitude more attention than events
outside the company. However,
this is changing rapidly in many

Software, rather than mechanics and
hardware, now defines a product’s value.

	 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE � 85

industries with software-intensive
systems. Companies are increasingly
realizing the benefits of playing nice
with others and availing themselves
of the opportunities presented by
using their partner ecosystem more
proactively and intentionally.

The trend. The competitive battle-
ground for companies is shifting
from focusing on internal scale,
efficiency, and quality and serv-
ing customers in a one-to-one rela-
tionship, to creating and contribut-
ing to an ecosystem of players that
can include suppliers, complemen-
tors, customers, and, potentially,
competitors. We see the ecosystem
trend not only in the mobile indus-
try’s app stores but also in business
to-business markets such as those
surrounding SAP and Microsoft
Office. Establishing and evolv-
ing ecosystems of different partner
types is the key differentiator in sev-
eral industries and might ultimately
decide which companies win a mar-
ket and which get relegated to less
dominant positions.

The evidence. Bosch-Sijtsema and
I discussed several cases in which
companies improved their competi-
tiveness by effectively using their
ecosystems.11 However, one of the
most illustrative cases is Apple. By
creating its App Store, the com-
pany established itself as the domi-
nant player in the mobile industry.12
While competitors such as Nokia
were focusing on device quality, Ap-
ple was creating a partner ecosystem
to build new iPhone applications—
and this became a key differentiator
for the company.

The Key Factors
The following three factors are at the
heart of the trends I just described.

Speed
Analyses show that the ability to
respond quickly to events such as
customer requests, changing mar-
ket priorities, or new competitors is
critical to continued success. Com-
panies must respond at a constantly
accelerating rate, so speed will af-
fect the entire organization, from

its business models to its organiza-
tional structures.

Data
With storage costs falling to zero
and virtually every product’s con-
nectivity exploding, collecting data
from products in the field, custom-
ers, and other sources is a real-
ity that’s still unfolding. However,
the challenge isn’t the big data but
the organization’s ability to make
smart, timely decisions based on
the data. Although many compa-
nies still rely on their managers’
opinions, future organizations will
increasingly use data to inform de-
cision making. So, data collection,
data analysis, and decision making
based on that data will strongly af-
fect companies’ functions, architec-
ture, and ways of working.

Ecosystems
Future organizations will have in-
creasingly interdependent ecosys-
tems. Because the ecosystem is
central, business success requires in-
tentional, not ad hoc, management
of ecosystem partners. This is true
for both large keystone players and

the typically smaller complemen-
tors. As a result of increased speed
and data, companies will have to fre-
quently and aggressively change their
role and position in their ecosystems.
To effectively manage changing
relationships—while forward inte-
grating in the value chain by offer-
ing solutions or services and moving

backward by providing components
or entering adjacent markets—or-
ganizations will have to proactively
manage the ecosystem. This will
strongly affect software architec-
ture, interfaces, and ways of work-
ing with partner R&D teams.

Implications
I discuss here the trends’ implica-
tions for software engineering’s fu-
ture, using the BAPO (business, ar-
chitecture, process, organization)
framework.13

Business
This area involves two implications:
the transition from planning to ex-
perimentation and the adoption of
ecosystem principles.

From planning to experimentation.

Companies must transition from
working with planned releases with
detailed requirement specifications
to continuously experimenting with
customers—for example, by optimiz-
ing previously implemented features,
iteratively developing new features,
or building entirely new products.

This transition is critical for two

Establishing and evolving ecosystems of
different partner types might ultimately
decide which companies win a market.

86	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

reasons. First, research has shown
that more than half the features in a
typical software-intensive system are
never or hardly ever used.14 Build-
ing slices of features and then mea-
suring changes in customer or sys-
tem behavior is a structured way to
minimize investment in features that
don’t add value. Second, as I dis-
cussed earlier, customer needs and
desires change rapidly. Companies

that don’t constantly test new ideas
with customers risk being disrupted
by companies that more readily iden-
tify shifts in customer preference.

Adopting ecosystem principles. Cus-
tomer experimentation requires or-
ganizing in fundamentally different
ways. Traditional functions and hi-
erarchies are no longer sufficiently
fast and efficient. Teams will require
more autonomy to make decisions
locally on the basis of qualitative
and quantitative data from systems
in the field.

Moreover, the sheer size of the
systems being built these days makes
it increasingly difficult to handle
their complexities. Instead, we must
view them as ecosystems with sev-
eral parts and autonomous organiza-
tional units responsible for the parts.

This autonomy’s principles are
similar to those of software ecosys-
tems in which the parties make de-
cisions independently—within the
underlying constraints of the ecosys-
tem’s architecture and platform—
while contributing to the ecosystem’s

overall goal. Traditional organiza-
tions focus on power hierarchies to
centralize decision making. Going
forward, teams will be increasingly
autonomous, and organizational
leaders will need to emphasize pur-
pose and culture, which will provide
the guardrails for the teams to oper-
ate within. In effect, software eco-
system principles will be adopted in-
side organizations.

Architecture
This area involves four implications:
unprecedented architecture modu-
larity and flexibility, continuous
refactoring, autonomy, and integral
data collection.

Unprecedented architecture modular-

ity and flexibility. Although modular-
ity and flexibility have been impor-
tant software architecture elements
since their conception, they’re often
compromised to accomplish opera-
tional (runtime) quality attributes
such as performance. However,
with the increasing importance of
speed, experimentation, and team
autonomy, modularity and flexibil-
ity are being prioritized over other
quality attributes.

The microservices architecture
that Amazon, Netflix, and others
employ is an example of a highly
modular architecture. In this archi-
tectural style, large complex systems
are modeled as collections of small,
independent communicating pro-
cesses. Although controlling and pre-
dicting architecture properties might

seem difficult, doing so provides high
flexibility and modularity and easy
monitoring of system behavior. The
behavior is predictable for similar
system loads, which allows compari-
sons to earlier system executions.

Continuous refactoring. Especially
in the embedded-systems industry,
there’s a tendency to treat software
like mechanical design—that is, de-
sign once and use and extend for a
long time afterward. For software,
this leads to the accumulation of ar-
chitecture technical debt.

Continuous refactoring of
software-intensive systems’ archi-
tecture will maintain the architec-
ture’s suitability for its intended
purpose and minimize the cost of
adding features and use cases. How-
ever, architects will have to be able
to constantly identify and prioritize
refactoring items to use the allocated
resources optimally.

Autonomy. Driven by the transi-
tion to services, software’s growing
size, and human labor’s high cost,
software-intensive systems will be
increasingly autonomous. One of
the most illustrative examples is the
rapid emergence of semiautonomous
cars. Most industries have signifi-
cant opportunities to transition from
semiautonomous systems that help
users accomplish their business goals
to systems that autonomously ac-
complish those goals.

Architecturally, autonomy re-
quires reflective functionality: the
system collects data about its perfor-
mance and adjusts that performance
according to its goals. Because data
from different parts of the system
must be combined to derive relevant
information for decision making, ar-
chitectures will include data-fusion
functionality.

The “stairway to heaven” model describes
the evolution of companies’ software

development processes.

JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 87

Integral data collection. Increasingly,
autonomous software-intensive sys-
tems need continuous data collec-
tion about their operation so that
they can control and change their
behavior when needed. In addition,
feedback from deployed systems and
their users is becoming increasingly
important for experimentation. So,
collecting operational, usage, and
other data is rapidly becoming inte-
gral to architecture.

Future architectures must assume
that data collection at all system levels
is required and should be integrated
by default. Not collecting data for
certain system parts will require an
explicit decision. As I mentioned ear-
lier, fusing, aggregating, and abstract-
ing data will be key requirements for
architectures. Such capabilities will
be required both for the system’s re-
� ective functionality and for inform-
ing the system’s R&D organization.

Process
My colleagues and I developed a
“stairway to heaven” model describ-
ing how companies evolve their devel-
opment processes from a traditional
waterfall style to agile development
(see Figure 2).15 In that model, com-
panies adopt continuous integra-
tion as a core enabling technology.
Once new functionality is constantly

developed and available at produc-
tion quality, owing to the continuous-
integration environment, customers
will want to access new functional-
ity before the regular release process.
At this point, the company moves to-
ward continuous deployment. Once
continuous deployment fully rolls
out, the company can run more ex-
periments with customers and the
systems installed in the � eld.

Each step in the stairway has sig-
ni� cant implications for work pro-
cesses, organizational units, tooling,
and general work methods. In most
companies, the steps become increas-
ingly challenging as the required
changes involve larger and larger
parts of the organization. For in-
stance, besides R&D personnel, the
veri� cation-and-validation, release,
customer documentation, customer
support, and sales and marketing
teams must be involved to man-
age this fundamental shift in soft-
ware deployment. Aligning all these
groups in a well-functioning process
is much more dif� cult than adopting
agile development because it requires
changes in the R&D organization.

Organization
The two implications here are
cross- functional teams and self-
management.

Crossfunctional teams. Traditional
organizations rely on functionally
organized hierarchies that group
people with similar skill sets—for
example, product management, de-
velopment, veri� cation, or release.
Although this allows for pooling of
skills and � exible resource allocation
to activities, it often leads to slow de-
cision making and execution because
of the many handovers between
functions and decisions that must go
up and down the hierarchy.

Going forward, cross-functional
teams will be empowered to make
decisions and work with limited
coordination between teams. Ag-
ile R&D teams are an example. As
organizations climb the stairway to
heaven, these teams will replace the
hierarchical functions. For instance,
besides engineers, teams will in-
clude members with skills in veri� ca-
tion and validation; release; product
management; and, potentially, sales,
marketing, and general business.

Self-management. A disadvantage
of hierarchical management is the
time required to make decisions. In
fast-moving, highly complex envi-
ronments, relying on a hierarchical
model is a recipe for disaster. The al-
ternative is to decentralize manage-
ment to the point that individuals

Continuous
integration

Traditional
development

Continuous
deployment

R&D as an
innovation system

R&D organization
all agile

FIGURE 2. The “stairway to heaven” model describes the evolution of companies’ software development processes.

88 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

and teams manage themselves. Ag-
ile teams today often have signi� -
cant autonomy. As teams become
increasingly cross-functional, self-
management will be required to
maintain competitiveness. Manage-
ment will be more concerned with
growing and steering the organiza-
tion’s culture, resulting in individu-
als and teams making good decisions
despite the lack of the traditional
hierarchies.

S oftware’s growing role in
society is mindboggling at
times, and the rate of inno-

vation it enables is impressive. How-
ever, all this software must be built,
which means that software engineer-
ing’s importance is also growing.
As Yogi Berra said, “It’s tough to
make predictions, especially about
the future.” So, the implications I
described aren’t intended to be con-
crete predictions but rather extrapo-
lations based on the six trends I dis-
cussed. The future will show how
accurate I’ve been.

References
 1. M. Andreessen, “Why Software Is

Eating the World,” Wall Street J.,

20 Aug. 2011; www.wsj.com/articles

/SB100014240531119034809045765

12250915629460.

 2. M.A. Cusumano, “The Changing

Software Business: Moving from

Product to Services,” Computer,

vol. 41, no. 1, 2008, pp. 20–27.

 3. C. Ebert and C. Jones, “Embed-

ded Software: Facts, Figures, and

Future,” Computer, vol. 42, no. 4,

2009, pp. 42–52.

 4. V. Vyatkin, “Software Engineering in

Industrial Automation: State-of-the-

Art Review,” IEEE Trans. Industrial

Informatics, vol. 9, no. 3, 2013, pp.

1234–1249.

 5. W.C. Shih, “Does Hardware Even

Matter Anymore?,” Harvard Business

Rev., 9 June 2105; https://hbr.org

/2015/06/does-hardware-even

-matter-anymore.

 6. H. Gebauer and T. Friedli, “Behav-

ioral Implications of the Transition

Process from Products to Services,”

J. Business and Industrial Marketing,

vol. 20, no. 2, 2005, pp. 70–78.

 7. R. Oliva and R. Kallenberg, “Manag-

ing the Transition from Products to

Services,” Int’l J. Service Industry

Management, vol. 14, no. 2, 2003,

pp. 160–172.

 8. S.W. Elfving and N. Urquhart, “Ser-

vitization Challenges within Telecom-

munications: From Serviceability to a

Product-Service System Model,” Proc.

2013 Spring Servitization Conf. (SSC

13), 2013, pp. 95–100; www

.aston-servitization.com/publication

/� le/35/31_spring-servitization

-conference-2013-proceedings.pdf.

 9. P. Bosch-Sijtsema and J. Bosch, “User

Involvement throughout the Innova-

tion Process in High-Tech Industries,”

J. Product Innovation Management,

vol. 32, no. 5, 2014, pp. 793–807.

 10. L. Downes and P. Nunes, Big Bang

Disruption: Strategy in the Age of Dev-

astating Innovation, Penguin, 2014.

 11. P.M. Bosch-Sijtsema and J. Bosch,

“Plays Nice with Others? Multiple

Ecosystems, Various Roles and

Divergent Engagement Models,”

Technology Analysis and Strategic

Management, vol. 27, no. 8, 2015,

pp. 960–974.

 12. D. Tilson, C. Sørensen, and K. Ly y-

tinen, “Change and Control Paradox-

es in Mobile Infrastructure Innova-

tion: The Android and iOS Mobile

Operating Systems Cases,” Proc. 45th

Hawaii Int’l Conf. System Science

(HICSS 12), 2012, pp. 1324–1333.

 13. F. van der Linden et al., “Software

Product Family Evaluation,” Software

Product-Family Engineering, LNCS

3014, Springer, 2004, pp. 110–129.

14. E. Backlund et al., “Automated User

Interaction Analysis for Work� ow-

Based Web Portals,” Software Busi-

ness: Towards Continuous Value De-

livery, Springer, 2014, pp. 148–162.

 15. H.H. Olsson, H. Alahyari, and J.

Bosch, “Climbing the ‘Stairway to

Heaven’—a Multiple-Case Study Ex-

ploring Barriers in the Transition from

Agile Development towards Continu-

ous Deployment of Software,” Proc.

38th EUROMICRO Conf. Software

Eng. and Advanced Applications

(SEAA 12), 2012, pp. 392–399.

ABOUT THE AUTHOR

JAN BOSCH is a professor of software engineering at Chalmers Univer-

sity of Technology and the director of the Software Center. His research

interests include software architecture, evidence-based (or data-driven)

software engineering, software ecosystems, and customer-driven and

open innovation. Bosch received a PhD in computer science from Lund

University. Contact him at jan@janbosch.com.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

