Software Engineering

: - ' .
L } | oy,

CSC40232: SOFTWARE ENGINEERING

=

Professor: Jane Cleland-Huang
Architecture

Wednesday, April 19th
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

Dog Houses to sky scrapers

Software Engineering

What is Architecture?

= The software architecture of a program or
computing system is the structure or structures
of the system, which comprises software
elements, the externally visible properties of
those elements, and the relationships among

them.

= An abstract view of the system that distills away
implementation, algorithm, and data details —
focusing instead on behavior and interaction of
black box elements.

- (Bass definition)

Marchitectures

No nutritional

m[@%‘h‘ World Class Standards
Simple M2M Architecture value.
Great for

~ J . ! e
J , : . ‘marketing’ the

|

.
I
.
b s

= :,’ﬁ architecture, but
provides little

information to the

developers.

Software Engineering

An Architecture must answer these questions:

= Which requirements are the structuring and decisions
based on?

= Which are the major logical and physical system building
blocks?

= How are the system building blocks related to one
another?

= What responsibilities do the system building blocks have?
= What interfaces do the system building blocks have?
= How are the system building blocks grouped or layered?

= What are the specifications and criteria
used to divide the system into building
blocks?

https://www.healthcare.gov/

“Other” definitions ???

= Architecture is high level design

= Architecture is the overall structure of the system
(which structure?)

= Architecture is the structure of the components, their
interrelationships, AND the principles and guidelines
governing their design and evolution.

= Architecture is purely a description of components
and connectors. (i.e. focus on runtime architecture).

= Architecture is the composition of a set of
architectural design decisions. (Jan Bosch)

Software Engineering

What drives architectural solutions?

= NOT requirements alone! Different architects would
produce different solutions from the same requirements.

= Architecture is influenced
by technical, business,
and social influences.

= _...and conversely, it
influences technical,
business, and social
environments.

A Lesson from History

= 1625 the Swedish king Gustavus
Adlophus ordered
new warships.

= The VASA was built in Stockholm.
It was to be the mightiest
warship in the world, armed with
64 guns on 2 gundecks.

Software Engineering

= The architect, Hybertsson
had to balance many concerns:

A Lesson from History

Swift time to deployment
Performance
Functionality

Safety

Reliability

Cost

= His experience told him to design the VASA as
though it were a single-gun-deck ship and then
extrapolate.

= “Luckily” for Hybertsson he died one year before
the final launch! o

= The project was completed to
specifications.

= On Sunday, August 10t, 1628 the
ship set sale, waddled out into
Stockholm’s deep water harbor,
fired her guns in salute, and
promptly rolled over and sank.

A Lesson from History

= A post mortem analysis showed
that:

= The ship was well built but badly proportioned.
= Hybertsson failed to balance conflicting

constraints, failed to manage risks, and failed
to manage his customers (especially the king!)

Software Engineering

The architecture life-cycle

= Create the business case.

= Understand the requirements.

= Create or select the architecture.

= Document and communicate the architecture.

= Analyze or evaluate the architecture.

= Implement the system based on the architecture.

= Ensure that the implemented system conforms to the
architecture.

A second look at the definition of SA

| I
s

= Software Elements — the Software architecture defines
how elements interact, and suppresses details that
are purely internal to an element.

= Architectural structure is represented through
multiple views.

= Every software system has an architecture (whether
formally documented or not)

= The behavior of each element is part of the
architecture.

= There are good and bad architectures! @ D @
See examples 7

l“ 12

Software Engineering

Architectural Patterns, reference models, &

reference architectures

= An architectural pattern is a description of element and
element types together with a set of constraints on how
they are used.

Example: Client

o e server, blackboard,
Cllemt o Toarbainchm . .
g . Prmten e pipe-and-filter.
____________________ : Architectural
emnl Tt Taaln'lerslons op e
tterns exhibit
Apytication Sarver [_]l-l- [P —— pa
* Do known quality
[] [

attributes.

ThiiTen Tkl Also referred to as
Dala Server s Deinmrien .
% Deavalitetan architectural style.

Architectural Patterns, reference models, &

reference architectures

= Areference model provides a decomposition of
functionality together with the data flow.

= Found in mature domains.

Example:

Compiler or
_ DBMS

No need to

recreate the
architecture
from the
ground up.

Reg. Alloc
&
Codegen

Software Engineering

Architectural Patterns, reference models, &

reference architectures

NOILONAOYLN]|

A reference
architecture maps a
reference model onto
software elements.

Why is Software Architecture Important?

Communication between stakeholders
(although there are other non-
Software Architecture-centric
techniques for
communicating too).

=
—
X
o
o
c
(@]
=
o
=

(8 STAKEROLDER .
TRTFIATIVS
!

Software Engineering

Stories from the trenches: https://www.infog.com/ebay

What makes a good architecture?

The architecture should be the product of a single architect
or a small group of architects.

The architect should have the functional requirements for
the system and an articulated, prioritized, list of quality
attributes that the architecture is expected to satisfy.

The architecture should be well documented with at least
one static view and one dynamic view (using
understandable, agreed upon notation).

The architecture should lend itself to incremental
implementation via the creation of a ‘skeletal’ system in
which communication paths are exercised but which
starts out with minimal functionality.

17

What makes a good architecture?

Well defined modules (information hiding and
separation of concerns).

Well defined interface for each module.

Quality concerns achieved using well-known
architectural tactics.

Architecture should be independent of specific
versions of commercial products.

Producers and consumers of data should be separated
from each other.

Software Engineering

Multiple views

4+1 Approach

End-user
Functionality

Programmers

Software management Software

architecture =
{Elements, Forms,
Rationale/
Constraints}

Development

Logical View View

r (Scenarios)

Process View

Formula applied
separately to each
view.

Physical View

Different styles can

Integrators System engineers be applied to each
Performance Topology view
Scalability Communications ’

Philippe Kruchten: The 4+1 View Model of
Architecture. IEEE Software 12(6): 42-50 (1995)

10

Software Engineering

4+1 Approach: Logical view

= Primarily supports functional
requirements i.e. what the system
should provide to its users.

Class diagram

= System decomposed into a set of key
abstractions (primarily from problem
domain) in the form of objects or object
classes.

Communication Diagram

= Exploits abstraction, encapsulation, x
inheritance. : .

= Representations: Class diagrams, E-R
Diagrams, State transition diagrams,
state charts.

Sequence Diagram
Note: Diagrams can be
used for Architecture or

design. 21

4+1 Approach: Process view

* Models NFRs such as performance, TG
availability, & fault-tolerance.

= A process groups tasks into an
executable unit, which can be
scheduled, started, recovered,
reconfigured, shut down, or replicated.

Activity Diagram

= Major tasks communicate via a set of well-defined inter-
task communication mechanisms: synchronous and
asynchronous message-based communication services,
remote procedure calls, etc.

= Minor tasks communicate via shared memory
and rendezvous etc.

11

Software Engineering

4+1 Approach: Development View

= Also referred to as implementation view.

= Shows organization of software modules, libraries, subsystems,
and units of development.

= Serves as an allocation view.

Package Diagram

Component Diagram 3

4+1 Approach: Physical View

= Also referred to as deployment view.

= Takes into account NFRs such as availability, reliability (fault-
tolerance), performance (throughput), and scalability.

= Various elements i.e. processes, tasks, and objects—need to
be mapped onto various nodes.

= Different configurations for development and testing,
deployment etc. Mapping needs to be flexible.

— Deployment
: il | Crnn Diagram

12

Software Engineering

The good, the bad, and the ugly...

Push Architecture

5. Perform trace

Trace

(query, list of models to troce against)

g g
| 6. returns
| Trace Results . x

Engine T

[for example Poirot)

| with condidate and

4. Define trace
query

Model 4
{for example Autocad)

1. Add model

2, Export list of
artifacts to Poirot

3. Obtain list of [
ovailoble models to be
traced against Model B

= [for example Enterprise
Architect)

other models
(Madelica, DOORS, etc)

The good, the bad, and the ugly...

Pull Architecture

4. Perform trace

fqus s o froce against,

9. returns
Trace Resuits
ith candidate ond
inks

3. Define trace
query

Model A et

for examgle Aut
for example Autocad) | oo

le models’ nomes

6. Check last dato update

7. Retrieve {pull] list of artifocts

Trace
" Engine T

{for exampie Poirat) 1

5. Get models’
details

Registry of

models
. 4
i Remate
Tool API
n list of Model B

[for examgle Enterprise
Architect]

1. Add models

8. returns List of Artifacts

Remote

Tool APl

ather models
[Modelica, DOORS, etc)

13

Software Engineering

The good, the bad, and the ugly...

Distributed Architecture with Central Coordination

2. Obtain st af
ovallable models” nomes
ond ids

Maodel A

Registry of
models

Yy

5. Get models’
de

{for example Autocad)

3. Define trace query
4. Perform trace

fquery, list of modeis)

8. returns combined
Trace Results
from all models

L]

Trace Engines

Coordinator

{
remate " Mu,dc g other models
{for example Enterprise
Archivect) [Modelica, DOORS, etc]

Remote Trace Remote Trace
Engine T Engine T
{for example Polrot) {for example Poirot)

¥ I E ¥

6. Perform trace fguery)

7. returns Trace Results

Return to slide sequence 2

14

