
SE350 Lecture Slides

1

SE350: PRINCIPLES OF OBJECT ORIENTED DESIGN

Jane Cleland‐Huang
Office: CDM 836
Hours: Tuesday/Thursday 3.30pm‐4.15pm
Phone: 312‐362‐8863
Email: jhuang@cs.depaul.edu

2

Questions
 How do we solve programming problems when

we need to apply different algorithms or
different solutions according to the current
context and/or state of the system?

 How can we effectively test our programs?

SE350 Lecture Slides

2

3

A Duck Story
 Joe works for a company creating a simulation

game called Quackers. He is an OO
programmer and his job is to create the
necessary functionality for the game.

 The game must support the
following features:

 It should include a variety
of ducks

 All ducks can swim

 All ducks can quack

4

Duckies

MallardDuck

+ display()

RedHeadDuck

+ display()

Duck

+ quack()
+ swim()
+ display()

Lots of
other

kinds of
ducks

All ducks can quack and
swim so the superclass
takes care of the
implementation.

All ducks look
different so display()
is an abstract
method, and each
subtype is
responsible for
implementing its own
display() behavior.

SE350 Lecture Slides

3

5

Duckies

MallardDuck

+ display()

RedHeadDuck

+ display()

Duck

+ quack()
+ swim()
+ display()

Other
kinds

of
ducks

+ fly()

The product manager decides to
introduce new functionality to the
game and let ducks fly.

Joe adds a new fly() method to the
superclass, and the behavior is
inherited by all subclasses.

6

Duckies

MallardDuck RedHeadDuck

Duck

RubberDuck

+ display()

But…. By putting fly() into the
superclass, Joe gave “fly()”
behavior to all classes, even those
who shouldn’t fly!

+ display() + display()

+ quack()
+ swim()
+ display()
+ fly()

SE350 Lecture Slides

4

7

Duckies //Duck quack
void quack() {

System.out.println(“Quack, Quack”);
}

//Concrete classes
void quack() {

System.out.println(“Peep, Peep”);
}

//Duck fly
void fly() {

.. Fly functionality here….
}

//RubberDuck
void fly() {

// do nothing
}

With this design we HAVE TO
overwrite the fly() method for
RubberDuck to make sure that
it can’t fly.

quack quack peep

8

Duckies – Interfaces?

What about using interfaces?
What problems do you see here? We need a solution!

MallardDuck

+ display()
+ fly()
+ swim()

ReadHeadDuck

+ display()
+ fly()
+ swim()

Duck

+ quack()
+ display()

RubberDuck

+ display()
+ quack()
+ float()

Fly

DecoyDuck

+ display()
+ quack()
+ float()

Swim

Float

SE350 Lecture Slides

5

9

Principles of OO Design

1. Separate and encapsulate the part of your
design that will vary.

Think about what varies
in the Quackers game.

Throughout this course we will be learning about
several different principles of OO design. Today we
will look at three fundamental ones..

10

Separate out the parts that will change

FlyWithWings

+ fly()

FlyNoWay

+ fly()

Quack

+ quack()

Peep

+ quack()

Mute

+ quack()

- quackDecibels

+ quack()

<<QuackBehavior>>

- flyHeight
- flyVelocity

+ fly()

<<FlyBehavior>>

 Fly() and Quack() behaviors will vary.
 Create separate hierarchies of classes to represent each of

these behaviors.
 Each duck will reference the appropriate fly and quack

behaviors.

SE350 Lecture Slides

6

11

Principles of OO Design

1. Separate and encapsulate the part of your
design that will vary.

2. Program to an interface and not an
implementation.

Throughout this course we will be learning about
several different principles of OO design. Today we
will look at three fundamental ones..

12

Integrating the behavior

MallardDuck

+ display()

RedHeadDuck

+ display()

RubberDuck DecoyDuck

QuackBehavior

Quack Peep Mute

FlyBehavior

Fly FlyNoWay

Duck

- FlyBehavior flyBehavior
- QuackBehavior quackBehavior

+ performQuack()
+ swim()
+ display()
+ performFly()

SE350 Lecture Slides

7

13

The code.. public abstract class Duck {
protected FlyBehavior flyBehavior;
protected QuackBehavior quackBehavior;

public void swim() {
// Swim functionality here

}

public abstract void display();

public void performFly() {
flyBehavior.Fly();

}

public void performQuack() {
quackBehavior.Quack();

}
}

public class RubberDuck extends Duck {
public RubberDuck(){

super.flyBehavior = new FlyNoWay();
super.quackBehavior = new Peep();

}
………

}

Quack and Fly behavior are
established in the concrete
duck classes through instantiating
the appropriate concrete behaviors.

14

Principles of OO Design

1. Separate and encapsulate the part of your
design that will vary.

2. Program to an interface and not an
implementation.

3. Favor object composition over inheritance.

Throughout this course we will be learning about
several different principles of OO design. Today we
will look at three fundamental ones..

SE350 Lecture Slides

8

15

Duckies
 Joe is given a new challenge by his boss. The

competition is getting ahead.

 His challenge is to create a duck shooting game
and to create different types
of ducks dynamically
during the game.

 Ducks needs to change their
behavior too if different
things happen to them.

16

Duckies
Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior

performQuack()
swim()
display()
performFly()
setFlyBehavior(FlyBehavior)
setQuackBehavior(QuackBehavior)

public void setQuackBehavior(QuackBehavior qb){
quackBehavior = qb;

}

public void setFlyBehavior (FlyBehavior fb){
flyBehavior = fb;

}

SE350 Lecture Slides

9

17

Changing behavior…

MallardDuck

display()

RedHeadDuck

display()

RubberDuck DecoyDuck

QuackBehavior

Quack Peep Mute

FlyBehavior

Fly FlyNoFly

Duck

FlyBehavior flyBehavior
QuackBehavior quackBehavior

performQuack()
swim()
display()
performFly()

public static void main(String[] args) {

Duck mallardDuck = new MallardDuck();
mallardDuck.display();
mallardDuck.swim();
mallardDuck.performFly();
mallardDuck.performQuack();

// Now change its behavior
mallardDuck.setFlyBehavior(new FlyNoWay());
mallardDuck.setQuackBehavior(new Mute());
mallardDuck.performFly();
mallardDuck.performQuack();

}

18

 You have just been introduced to your first design pattern!!

 The strategy pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable.
Strategy let’s the algorithm vary independently from the
clients that use it.

QuackBehavior

Quack Peep Mute

FlyBehavior

Fly FlyNoFly

Quack strategy Fly strategy

The STRATEGY Pattern

SE350 Lecture Slides

10

19

Strategy Design Pattern

20

Strategy design pattern

StrategyClient

- strategy:Strategy

+setStrategy(s:Strategy):void
+performOperation()

«interface»
Strategy

+Operation()

ConcreteStrategyA

+Operation()

ConcreteStrategyB

+Operation()

Static structure
Take a few minutes to figure out how classes in this design
pattern match our solution for the ducks.

Note: Another version of this
pattern uses an abstract
superclass for Strategy and
class inheritance to create
ConcreteStrategy

SE350 Lecture Slides

11

21

Strategy design pattern (aka Policy)

Use the Strategy pattern when:
 You have a variety of ways to perform an action
 You might not know which approach to use until runtime
 You want to easily add new ways to perform an action
 You want to keep code maintainable as you add

behaviors

Description
The strategy pattern defines a family of algorithms,
encapsulates each one, and makes them interchangeable.
Strategy let’s the algorithm vary independently from the
clients that use it.

22

Strategy: Implementation

 Strategy. Interface that defines the common
operation or operations that each variant behavior
must provide

 ConcreteStrategy. Implements the methods of the
Strategy interface to provide a specific variant
behavior

 StrategyClient. Provides operations for selecting
the appropriate Strategy and performing the
operations provided by Strategy

SE350 Lecture Slides

12

23

Strategy design pattern

Dynamic behavior

:StrategyClient s:Concrete
Strategy

setStrategy(s:Strategy)

operation(value)

result

performOperation(value)

event

:Client

result

24

Dronology Requirements

R2 The system will either be in physical mode or virtual mode
but never simultaneously in both.

R3 When the system is in physical mode only physical drones
will be used.

R4 When the system is in virtual mode only virtual drones will
be used.

R5 The system will not switch modes at runtime.

A framework for
interactively
coordinating the safe
flight of drone
formations.

SE350 Lecture Slides

13

25

Strategy Pattern in Dronology

ManagedDrone

managedDrone(iDrone)
currentPosition
droneName
basePosition

run()
flyTo()
assignFlight()

iDrone

flyTo()
takeOff()
land()

VirtualDrone

flyTo()
takeOff()
land()

PhysicalDrone

flyTo()
takeOff()
land()

Inheritance
(generalization
relation)

Aggregation
relation

/**
* Constructs drone
* @param drnName
*/
public ManagedDrone(iDrone drone, String drnName) {

this.drone = drone ;
droneState = new DroneFlightModeState();
droneSafetyState = new DroneSafetyModeState();
currentPosition = null;
droneName = drnName;
……

}

public class ManagedDrone
implements Runnable{

iDrone drone; // Controls
primitive flight commands

26

Managed Drone Class

public void flyTo(Coordinates targetCoordinates) {
drone.flyTo(targetCoordinates);

}

SE350 Lecture Slides

14

27

Strategy: Who chooses it?

 In the basic form of the pattern, an external Client sets the
strategy for the StrategyClient and invokes
performOperation(…) on it

 Implementation variant: StrategyClient invokes
setStrategy(…) on itself to select appropriate Strategy,
based on value or characteristics of parameter passed into
performOperation(…)

This variant can make use of the reflection mechanisms
in Java to determine the type of object passed to
performOperation(…) and choose the strategy
accordingly

28

Strategy: Benefits & Drawbacks

+ Easier maintenance since each behavior is
defined in its own class

+ Easier to extend the behavior of an object: just
create a new class

± You must identify a generic common interface
for all Strategies that must also be specific
enough for various concrete Strategies

SE350 Lecture Slides

15

29

Strategy Pattern
 In this example we want

to be easily able to
interchange the style
for printing invoices.

 For example:

 Plain invoice

 Fancy invoice

 html invoice

 Before we get started let’s draw a UML class
diagram for our solution.

30

InvoiceFormatter interface

package Invoices;
public interface InvoiceFormatter {

// Format header
String formatHeader();

// Format line item
String formatLineItem(LineItem item);

// Format footer
String formatFooter(double invoiceTotal);

}

* Comments etc have been removed for display purposes.

Methods that
concrete classes
MUST override

SE350 Lecture Slides

16

31

Concrete FancyFormatter
package Invoices;

public class FancyFormatter implements InvoiceFormatter {

public String formatHeader() {
return "\n~~~~~~\nI N V O I C E\n~~~~~~\n\n\n";

}

public String formatLineItem(LineItem item) {
return (String.format("%s: $%.2f\n", item.toString(),

item.getPrice()));
}

public String formatFooter(double total) {
return (String.format("\nPLEASE REMIT THE

FOLLOWING AMOUNT: $%.2f\n", total));
}

}

32

Line Item (a supporting class)
package Invoices;

public class LineItem {

private String description;
private double price;

public LineItem (String description, double price){
this.description = description;
this.price = price;

}

public double getPrice() { return price;}
public String toString() { return description;}

}

SE350 Lecture Slides

17

33

Invoice
public class Invoice {

private List<LineItem> items = new ArrayList<LineItem>();
public void addItem(LineItem item) {

items.add(item);
}

public String format(InvoiceFormatter formatter) {
StringBuilder sb = new StringBuilder();
sb.append(formatter.formatHeader());
double invoiceTotal = 0.0;
for (Iterator it = items.iterator (); it.hasNext ();) {

LineItem i = (LineItem)it.next ();
sb.append(formatter.formatLineItem(i) + "\n“);
invoiceTotal += i.getPrice();

}
sb.append(formatter.formatFooter(invoiceTotal));
return sb.toString();

}
}

A formatter
strategy is
received as an
argument and
then used to
format the
header, line
items, and footer.

34

InvoiceTester
package Invoices;
public class InvoiceTester {

public static void main(String[] args) {
final Invoice invoice = new Invoice();
final InvoiceFormatter formatter = new SimpleFormatter();
final InvoiceFormatter formatter2 = new FancyFormatter();

// Add line items to the invoice.
invoice.addItem(new LineItem("Hammer", 19.95));
invoice.addItem(new LineItem("Assorted nails", 9.75));
……

String displayInvoice = invoice.format(formatter);
System.out.println(displayInvoice);

}
}

Create two
types of
formatter.

Pass the desired
formatter to
invoice.format(..)

SE350 Lecture Slides

18

Testing

(won’t cover it
all in one night!)

The first bug

Moth found
trapped between
points at Relay #
70, Panel F, of
the Mark II
Aiken Relay
Calculator while
it was being
tested at
Harvard
University, 9
September 1945.

SE350 Lecture Slides

19

Why we TEST
 We test software because we cannot guarantee its

correctness – under normal development practices.

 Testing is the art of devising and executing test cases that
have a high likelihood of finding errors.

 A small subset of faults accounts for most failures during
operation.
We need to ‘test smart’ in order to find these faults.

 A high-quality product will experience few failures.
Remember the five 9s of reliability!

Verification and Validation
 Testing is just part of a broader topic referred to as

Verification and Validation (V&V)

 Pressman:
 Verification: Are we building the product right?

 Validation: Are we building the right product?

 IEEE standard 1012-1998:
 Requirements validation is the process of evaluating an implemented

system to determine whether it conforms to the specified requirements.

 SWEBOK:
 Validation is the process of ensuring that the engineer has understood

the requirements correctly, in other words “Have we got the right
requirements?”

SE350 Lecture Slides

20

Some words of wisdom
To what extent do you agree with these quotes?

 “Testing only to end user requirements is like inspecting a
building based on the work done by the interior designer at the
expense of the foundations, girders, and plumbing”
Boris Beizer.

 “Optimism is the occupational hazard of programming; testing
is the treatment.”
Kent Beck

 “The first mistake that people make is thinking that the testing
team is responsible for assuring quality.”
Brian Marick.

SE350 Lecture Slides

21

A Software Testing Strategy for
Conventional Software Development

 Testing progresses from “in the small” to “in the large”.

Unit
test

Integration test

High-order tests
Requirements

Design

Code

Testing
“direction”

SE350 Lecture Slides

22

Statement coverage:
Goal is to execute each
statement at least once.

Branch coverage
Goal is to execute each branch
at least once.

Path coverage
Where a path is a feasible
sequence of statements that can
be taken during the execution of
the program.

What % of each type of
coverage does this test
execution provide?

5/10 = 50%

2/6  33%

¼  25% Where does the 4 come from?

Test Coverage Metrics

SE350 Lecture Slides

23

A Strategic Approach to Testing

 Specify product requirements in a quantifiable manner long
before testing commences.
 Quantify all non-functional requirements.
 Remove ambiguities (etc, etc)

 State testing objectives explicitly. For example:
 Test effectiveness
 Test coverage
 Mean time to failure
 The cost to find and fix defects
 Remaining defect density
 Test work-hours per regression test.

A Strategic Approach to Testing

 Understand the users of the software and develop a profile
for each user category.

 Focus testing on actual use of the product.

 Develop a testing plan that emphasizes “rapid cycle testing.”
 Test field “trialable” increments of functionality

 Feedback generated from rapid cycle tests can be used to control
quality levels and subsequent test strategies.

 Build “robust” software that is designed to test itself.
 Software should be designed with inbuilt antibugging techniques.

 It should be capable of diagnosing certain classes of errors.

 Design should accommodate automated testing and regression testing.

SE350 Lecture Slides

24

A Strategic Approach to Testing

 Use effective formal technical reviews as a filter prior to
testing.
 FTRs have been shown to be as effective as testing in uncovering

errors.

 Conduct FTRs to assess the test strategy and test cases
themselves.
 Uncover inconsistencies, omissions, and outright errors in the testing

approach.

 Develop a continuous improvement approach for the testing
process.
 Test strategy should be measured.

 Metrics collected should be used as part of a statistical process
control approach for software testing.

Unit Testing
 Focuses on a single software component or module.

 Design description guides test generation to
 Ensure coverage of important control paths

 Test the boundaries of the module.

 Focuses on internal processing logic and data structures.

 Specific tests
 Does information flow correctly into and out of the unit?

 Does data stored in local data structures maintain its integrity during
ALL steps in the algorithm’s execution.

 Common errors
 Incorrect arithmetic precedence

 Incorrect initializations

 Precision inaccuracy

SE350 Lecture Slides

25

Unit Test Environment
 As no unit operates in

a vacuum it is
necessary to create
stubs and drivers.

Module
to be
tested

Stub Stub

Driver

RESULTS

Test
cases

Interface
Local data structures
Boundary conditions
Independent paths
Error handling paths

Pressman: Ed. 6, Figure 13.4

