
Software Engineering

1

CSC40232: SOFTWARE ENGINEERING

Professor: Jane Cleland‐Huang
Lecture 3: Observer Pattern
Wednesday, January 18th

sarec.nd.edu/courses/SE2017
Department of
Computer Science and
Engineering

2

A Weather Station
 Create an application

that initially provides
three display elements:

 Current conditions

 Weather statistics

 Simple forecast

 Also provide an API so
that other developers can
write their own weather
displays.

Software Engineering

2

3

Overview
Humidity
Sensor
Device

Pressure
Sensor Device

Temperature
Sensor Device

Weather
Station

Weather
data object

Weather-O-Rama Services

Pulls
data

Displays

4

The Weather Object

WeatherData
getTemperature()
getHumidity()
getPressure()
measurementsChanged()

public void measurementsChanged(){
currentConditionsDisplay.update(….);
weatherStatisticsDisplay.update(….);
simpleForecastDisplay.update(….);

}

Weather
Statistics

Simple
ForecastInteracts directly with the

weather station. When
data changes it invokes
measurementsChanged()

Weather
Station

Software Engineering

3

5

Misguided Solution

1. We are coding to
concrete implementations,
not interfaces.

2. For every new display
we need to alter code.

3. We have no way to add
(or remove) display
elements at runtime.

4. The display elements
don’t implement a common
interface.

5. We haven’t encapsulated
the part that changes.

6. We are violating
encapsulation of the
weather class.

True

True
True

Looks like they might.

True

Not really

6

A Better Solution

Software Engineering

4

7

The Observer Pattern

Dog
object

Cat
object

Mouse
object

Subject
object

Subject object
manages data.
Currently it
holds a red
triangle.

When the data in
the subject
changes, the
observers are
notified.

The data can be sent
directly to them, or
they make a call back on
the subject object to
fetch the data.

Observer Objects

The observers have
subscribed (registered
to) the subject to
receive updates when
the subject’s data
changes.

Duck
object

Duck object didn’t
register so it isn’t
notified of changes.

Observer
 Many-to-one dependency between

objects

 Use when there are two or more views
on the same “data”

 aka “Publish and subscribe” mechanism

 Choice of “push” or “pull” notification
styles

Observer

update()

Subject

attach(Observer)
detach(Observer)
notify()

ConcreteObserver

update()

ConcreteSubject

getState()

state=subject.getState();

forall o in observers
o.update()

Defines a one-to-many
relationship between a set
of objects.

When the state of one
object changes, all of its
dependents are notified.

Software Engineering

5

9

Cat and Mouse
In this simple animation the
mouse moves around the
canvas – sometimes
disappearing down an invisible
mouse-hole and then
reappearing elsewhere.

The cats observe the current
position of the mouse and try
to follow him around the
canvas.

 Traditional (from scratch)
implementation.

 Java inbuilt implementation

Disclaimer: The animation is only for display in class. The code I share with you is
non-GUI based. Next lecture we will start working with GUIs.

Observer interface
and concrete observer
class implemented ‘from
scratch’ in java.

 Observer interface
requires all concrete
classes to implement a
notify(Subject s) method.

 The notify(Subject s)
operation is called by
Subject class when the
subject changes.

 The concrete observer
(cat) makes a call-back
onto the subject (mouse)
object to get the data it
wants. i.e. the mouse
position.

Software Engineering

6

Subject interface
and concrete subject class
implemented ‘from scratch’ in
java.

Subject interface requires all
concrete classes to implement
three methods:

• Register observers

• Remove observers

• Notify observers

Here we see notification
at work:

 The mouseMove
method is executed, the
mouse moves, its state
changes and it invokes
notifyObservers()

 All currently
registered observers are
notified of the change.
“this” subject object is
passed to them and used
for call-backs. (See the
cat example a few slides
back!)

Sketch it!!

Software Engineering

7

13

Java Inbuilt Observer

Classes in my Eclipse
package explorer when
I implement the
solution from scratch.

Classes in my Eclipse
package explorer when
I implement the
solution using Java
Inbuilt observer.

https://docs.oracle.com/javase/8/docs/api/java/util/Observer.html

https://docs.oracle.com/javase/8/docs/api/java/util/Observable.html

<< Observer>>

Observable

We can use the Java inbuilt Observer Pattern

14

Java: Observer Pattern
Java provides an inbuilt Observer Pattern in the form of:
• An Observable superclass

Extend this class if you want something to be observed. i.e. this
plays the role of the subject.

• An Observer interface
Implement this interface if you want to register this object as an
observer.

Software Engineering

8

“Before” (using the custom-
built from-scratch Observer
interface)

Java Inbuilt Observer

…and “after” (using Java’s
inbuilt Observer interface).

What changed?

Java Inbuilt Observer
What
changed?

From Scratch

Java inbuilt

Software Engineering

9

Casting
Upcasting:
• Java permits an object of a subclass type to be treated as an object of any

superclass type.
• Upcasting is done automatically.
• Supports polymorphism
• Example:

List<Observer> observers = new LinkedList<Observer>();

Downcasting:
• Downcasting must be manually performed by the programmer
• Only sensible if the object being cast is an instance of that type
• We need to test the type before downcasting using:

if ([object] instanceof [class name]) do something;
• Example:

Worksheet

Most likely take-home as we have
a busy week planned!

