
Software Engineering

1

CSC40232: SOFTWARE ENGINEERING

Professor: Jane Cleland‐Huang
Lecture 4: Getting Started with Java FX
Wednesday, January 30th and February 1st

sarec.nd.edu/courses/SE2017
Department of
Computer Science and
Engineering

2

Resources
1. Introducing JavaFX 8 Programming,

by Herbert Schildt, Oracle Press

2. JavaFX Rich Desktop Applications,
Rajmahendra Hegde, Presentation at
Conference on Software
Development. URL:
http://www.slideshare.net/rajmahendr
a/javafx-2-rich-desktop-platform

https://www.eclipse.org/efxclipse/install.html#for-the-lazy

Some mac users complained on Stack Overflow that they had problems – and reinstalled
the all-in-one solution (other mac users had no problem at all).
http://efxclipse.bestsolution.at/install.html#all-in-one

Software Engineering

2

3

User Interface with Java
 AWT: Abstract Window Toolkit – provides only

rudimentary support for GUI programming.
Translates visual components into platform-
specific equivalents. Different apps may have
different look-and-feel.

 Swing (1997): Included in Java Foundation
Classes.

 Lightweight components i.e. written in java and do
not rely on individual platforms.

 Pluggable look-and-feel.

 Supports MVC (but combines VC)
More on MVC later in the course.

4

JavaFX
 A collection of classes and interfaces that define

Java’s GUI.

 Can be used to create GUIs for PCs, Tablets,
Web Applications, and mobile Apps.

 Provides a diverse set of controls (e.g. buttons,
scroll panes, text fields, trees, tables etc)

 Supports animation.

 Streamlines creation of an app by simplifying
the management of its GUI elements and the
application’s deployment.

Software Engineering

3

5

JavaFX There are numerous javafx
packages. Four main ones
include:

 javafx.application

 javafx.stage

 javafx.scene

 javafx.scene.layout

Today:

• JavaFX Basics: Application class, Stage class, Scene class, Layout
Wednesday:
• Handling Events: Controls, Keys, Mouse

6

Setting the Stage
The primary JavaFX
metaphor is the stage. A
stage contains a scene.

The stage is a container
for scenes.

A scene is a container for
items that comprise the
scene.

All JavaFX applications
automatically get access to
the primary stage – this is
provided by the runtime
system when a JavaFX
application is started.

To set a scene – add elements to an instance of the Scene and
then set the scene onto the stage.

Software Engineering

4

7

Nodes and Scene Graphs
 The elements of a scene are called

nodes. (e.g. a button)

 Nodes can consist of groups of nodes

 Nodes can have children

 The collection of all nodes in a scene is referred to as a
scene graph – and comprises a tree.

 A scene-graph has one root node.

8

Layouts

Software Engineering

5

9

Application Class and Life-Cycle

A JavaFX application must
extend Application class.
Application defines three life-
cycle methods which you can
override:
1. init() – performs

initializations but cannot be
used to build a scene or stage!

2. start() – called after init and
CAN be used to create a
scene or stage. Start() is
abstract and therefore MUST
be overridden by your
application!

3. stop() – called when the
application terminates

Include this –
although only
needed in
some cases.

Write compilable code
for a HelloWorld
JavaFX application.

10

Breaking it down:
1. Create a label – or some other

kind of control to place into
the scene

2. Add the label to the scene’s graph.

Call getChildren() on the root node of the scene graph. It returns a list of the
childnodes in the form of an ObservableList<Node>.

Add the new control to the list.

Equivalent code.
Intermediate steps are
made explicit.

Original code from
previous slide.

An ObservableList is packaged in javafx.collections – inherits java.util.List
and allows listeners to track changes when they occur.

Software Engineering

6

11

Multiple Controls/Layout

FlowPane root = new
FlowPane()

StackPane root = new
StackPane()

TilePane root = new
TilePane()

Improve the following line of code.
What OO Principle did you use?

This works too!

Rewrite the two lines of code shown above
without creating obsList as a named variable.

YouTube Video: First JavaFX Application https://www.youtube.com/watch?v=vMeG-lvIqQ8

12

Event Handling
Many JavaFX controls need to
generate events in response to user
input. E.g. buttons, check boxes,
lists etc.

JavaFX uses the delegation event
model.

Event Listener

Software Engineering

7

13

Delegation Event Model

Control

Event Listener
// java methods and
code that executes in
response to the event.

An event handler
registers itself with the
control.

Action
Event
Object

 The component
(control) fires
the event object (e.g.
when user clicks on the
button). It generates an
ActionEvent object.

 The ActionEvent
object is passed to the
event listener – which
responds by executing
appropriate code.

14

The EventHandler Interface
 Events are handled by implementing the EventHandler

Interface:
Interface EventHandler<T extends event>
 where T specifies the Type of event.
 T extends Event class
 T defines one method called handle()

 Specify an event handler in one of two ways:
 addEventHandler() (defined by the Node class)

removeEventHandler()
 Use the convenience method setOn (property)

 Events are processed by the event dispatch chain which is a
path from the top element in the scene graph to the target of
the event.

Software Engineering

8

15

Anonymous Classes

Before we look at event handlers – let’s look at the notion of
an anonymous class.

class ProgrammerInterview {
public void read() {

System.out.println("Programmer Interview!");
}

}

class Website {
/* This creates an anonymous inner class: */
ProgrammerInterview pInstance = new ProgrammerInterview() {

public void read() {
System.out.println("anonymous ProgrammerInterview");

}
};

}

This is a typical class.
It contains one method – read()

An instance of an
anonymous class is
being created here.

We define a method at
the same time as
creating an instance of
the class. We are
actually subclassing
ProgrammerInterview
and overriding read()! Event handlers are often defined using anonymous classes

16

Button Events

1. What is the control that initiates events?

2. What event object does it generate?

3. What is the name of the event handler instance?

4. How is the event handler instantiated?

5. What does this event handler instance actually do?

Try to answer these questions by looking at the code:

Software Engineering

9

YouTube demo of setting up a
button handler in JavaFX:
https://www.youtube.com/watch?
v=AbbiKE6W9gY

18

Another Control: CheckBox Some initial setup.
Define an array of
CheckBoxes and
create a TextArea
for displaying the
order in.

For each
checkbox in
the array,
create an
event handler.

Everytime the
order changes
we rewrite the
whole order
into the
TextArea.

Add Checkboxes to a Vbox
(vertical box). Add Vbox and
TextArea to the scene.

<? extends
Boolean> comes
from a super-
class definition!!!

Software Engineering

10

19

Another Control: CheckBox

1. What event does this new Listener listen for?

2. True or False?
When the focus is on another control and an event is initiated, the event
object will be sent to this Listener and then ignored.

3. The EventHandler for the button control was instantiated as:
new EventHandler<ActionEvent>()
Why is the CheckBox event handler instantiated in a different way as:
new ChangeListener<Boolean>

https://www.youtube.com/watch?v=Fu
hrwWVGO9A

20

Observer vs. Event Delegation

How do they differ and when
should each one be used?

Software Engineering

11

21

Key Events
When a key is pressed on the
keyboard a KeyEvent is generated.

KeyEvents can be handled by
instances of various classes
including Node and Scene.

KEY_PRESSED

KEY_RELEASED

KEY_TYPED

Node and Scene both define methods that make it easy to register an event handler
for the three types of key events:

final void setOnKeyPressed(EventHandler <? super KeyEvent > handler)

final void setOnKeyReleased(EventHandler <? super KeyEvent > handler)

final void setOnKeyTyped(EventHandler <? super KeyEvent > handler)

22

Key Events

Call getCharacter() on the
event to get the key-typed
event.

KEY_PRESSED KEY_RELEASED

KEY_TYPED

Call getCode()

Software Engineering

12

23

Example
Capture alpha-numeric
keys typed.

Capture other keys
pressed.
Note: On my keyboard
I had to press Shift-F10
and Shift-ALT to get
those keys to work!!

What would happen if
we didn’t include the
“break” statements?

YouTube video: https://www.youtube.com/watch?v=-9g7WLaQVlY

24

an aMAZing Example
But first we need to
look at the code to:
• Draw a circle
• Draw a line
• Import and display

an image.

Software Engineering

13

25

Circles
 Import Color shape package and paint.Color if we want to fill or color the circle

 import javafx.scene.paint.Color;
 import javafx.scene.shape.Circle;

 Create an instance of the circle
int x = 20; int y = 20; int radius = 50;
Circle circle;
// Create a circle with radius 50;
circle = new Circle(20);
circle.setCenterX(25);
circle.setCenterY(25);
OR: circle = new Circle(25,25,20);

 Moving the circle

26

Display an Image
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;

Image myImage = new Image(“images\\myImage.png”,50,50,false,false);
ImageView myImageView = new ImageView(myImage);
myImageView.setX(x);
myImageView.setY(y);
root.getChildren().add(myImageView);

requested width
requested height
preserve ratio
Smoothing

Software Engineering

14

27

Lines

Start using
https://docs.oracle.com/javase/8/javafx/api
To figure out how to construct and use java
classes.

28

Designing the Maze Solution
 Write down a simple description

of the problem.

 The application must generate
a maze and add a target icon onto
the target location. The seeker is placed
onto the maze in the top left position. The
users presses keys to move the seeker around
the maze. When the target is reached, the
icon changes to “won”. The game is played
and displayed in a GUI.

 Underline key nouns.

 Identify candidate classes.

Which
classes
do we
need ?

Maze Seeker Game

Software Engineering

15

Designing the Maze Solution
Class Name

Responsibilities Collaborators
Maze

• Generate a Maze
• Build the Maze
• Specify the start point
• Specify the end point

• Game

Seeker

• Move (Left, Right, Up,
Down)

• Return current position

• Maze
• Game

Game

• Display and update the
GUI elements of the game

• Request new maze
• Manage key input

• Maze
• Seeker

Class-responsibility-
collaboration (CRC) cards
are a brainstorming tool
used in the design of
object-oriented software.

They were originally
proposed by Ward
Cunningham and Kent
Beck as a teaching tool,
but are also popular
among expert designers
and recommended by
extreme programming
supporters.

Code Review (Live in class). View on YouTube:
https://www.youtube.com/watch?v=zXA--WSCPbs

