Software Engineering

Professor: Jane Cleland-Huang

Lecture 3: Observer Pattern
Wednesday, January 18th
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

If we aren’t
supposed to
program to an
implementation
—then how can
we actually
create new
things?

Software Engineering

Pizza orderPizza(String type) {
Pizza pizza;
if (type.equals(“cheese”)){

pizza = new CheesePizza();
} else if (type.equals(“greek”)){
pizza = new GreekPizza();

Pizza orderPizza() { } else if (type.equals(“pepperoni”){
Pizza pizza = new Pizza(); pizza = new PepperoniPizza();
pizza.prepare();
pizza.bake();

pizza.cut(); pizza.prepare();
pizza.box(); pizza.bake();
return pizza; pizza.cut();

} pizza.box();

return pizza;

Pizza orderPizza() {
Pizza pizza;
if (type.equals(“cheese”)){
pizza = new CheesePizza();

" ”

o SreekPizzal): We can expect
. M S Pizza types to
} else if (type.equals(“pepperoni”){ ____ continually change.
pizza = new PepperoniPizza();
} else if (type.equals(“clam”){
pizza = new ClamPizza();
} else if (type.equals(“veggie”){

The problem is dealing
with WHICH concrete
class needs to be

pizza = new VeggiePizza(); — instantiated. This kind
} of change is breaking
pizza.prepare(); OC principle.
pizza.bake(); This is probably _
pizza.cut(); going to stay Solution: Separate out
pizza.box(); pretty much the an'd encapfulat.e the

L same. thing that is going to

return pizza, change.

Software Engineering

Pizza orderPizza() {

Pizza pizza; if (type.equals(“cheese”)){

pizza = new CheesePizza();
} else if (type.equals(“pepperoni”){
pizza = new PepperoniPizza();
} else if (type.equals(“clam”){
pizza = new ClamPizza();
} else if (type.equals(“veggie”{
pizza = new VeggiePizza();

}
_/

Pull out the object
creation code from
the orderPizza

Putitintoa
PizzaFactory

. Method
pizza.prepare();
pizza.bake();
pizza.cut(); orderPizza()
pizza.box(); method
return pizza; becomes a client
} ’ of the factory.

The SimplePizzaFactory
does only one job —
creating pizzas for its

—

2 public class SimplePizzaFactory {
3e public Pizza createPizza(String type){

- - clients!
4 Pizza pizza = null;
5
6 if (type.equals("cheese")){ -
7 pizza = new CheesePizza(); We define the
8 } else if (type.equals("pepperoni")){ |createPizza
9 pizza = new PepperoniPizza(); method to be
Le } else if (type.equals("clam")){ called by clients.
L1 pizza = new ClamPizza();
L2 } else if (type.equals("veggie")){
L3 pizza = new VeggiePizza();
14 M
L5
16 return pizza; We haven't really improved
L7 } things that much yet...
18 }

Software Engineering

2 public class PizzaStore { &~

3

B

ounhwhoikPr®woNou

SimplePizzaFactory factory;

Give PizzaStore a
reference to
SimplePizzaFactory

public PizzaStore(SimplePizzaFactory factory){
this.factory = factory;

}

public Pizza orderPizza(String type){

Pizza pizza;
pizza = factory.createPizza(type);

pizza.prepare();
pizza.bake();

PizzaStore gets the
factory passed to it
in the constructor.

...and orderPizza() method
delegates the creation of

pizza.box();
return pizza;

pizzas to the factory.

The

“new” operator has been
removed from this class.

«<Java Class=>

~ FittingitallTogether
/\

@ orderPizza(String):Pizza

%

This is the client ‘ /

—

(® PirzaStore (® SimplePizzaFactory
{default package) ~factory (default package)
] ;] 0.1 ;]
d:PlzzaStDre(SlmplePlzzaFactury} &SlmplePlzzaFactury(}

We could choose
to define Pizza as
an interface or as
an abstract class

=<Java Class=>

@ createPizza(String):Pizza

=<Java Class=>
(®Pizza
{default packags)

& Pizza()

@ prepare():void
@ bake():void

@ box():void

[

AN

T —

This is the factory
where we create
pizzas. It should be
the only part of the
application that
refers to concrete
Pizza classes.

Here are the

<=lava Class=> =<lava Class=» ==lava Class>»> =<]ava Class== concrete
(®ClamPizza | | @ PepperoniPizza | | & CheesePizza | | (5 VeggiePizza duct
(default packags) (default packags) (default packags) || (default package) proaucts.
d:CIamPizza(} d:PepperuniPizza(} &ch eesePizzal) d:VEQQiePizza(}

Now we understand Factories — we can look at a real design pattern.

Software Engineering

gl We make
2 public abstract class PizzaStore { PizzaStore abstract
3
S public PizzaStore(){
5 }
6
7 public Pizza orderPizza(String type){
8 Pizza pizza;
9 pizza = createPizza(type); A"\
i) pizza.prepare();
1 pizza.bake(); createMethod is
2 pizza.box(); moved back into a
i } return pizza; PizzaStore method
c rather than a factory
6 abstract Pizza createPizza(String ty object.
7}

The factory method is now abstract
in Pizza Store.

@ orderPizza() is defined in the
abstract PizzaStore, not the
subclasses. The method therefore
has no idea which subclass is
actually running the code and
making the pizzas.

PizzaStore

createPizza()

NYStylePizzaStore

ChicagoStylePizzaStore

:"., orderPizza()

® orderPizza() calls createPizza()
to actually get a pizza object.

Which kind of pizza does it get?
This is NOT up to orderPizza()!!!

Which

pizza= createPizza();
store?

pizza.prepare();
pizza.bake();
pizza.cut();
pizza.box();

Software Engineering

=«Java Class==
(& PizzaStore
(default package)

ecPizzaSture(}
@ orderPizza(String):Pizza
AA crealeFizza(Siring).Pizza
f K ~pizza | 0.1
«<)ava Class=» z=Java Class>> <<]ava .Class»
(®MotrePizzaStore (® ChicagoPizzaStore O©Pizza
{default package) (default package) (default package)
& Notrepizzastors() & chicagoPizzaStore() &Fpizza))
4 createPizza(String):Pizza A& createPizza(String):Pizza @ prepare():void
@ bake():void
@ box():void
<<)ava Classs= [| <<Java Class=> <<)ava Class>>= «<Java Class»>
(& ClamPizza | | (3 VegaiePizza | | (3 PepperoniPizza| |(3CheesePizza
[default packags) {default package) {default packags) {default package)
QcclamPizza(} QCVeggiePizza[} cheppernniPizza(} eccheesePizza(}

abstract Product factoryMethod(String type)

A factory method is A factory method may be
abstract so that the parameterized (or not) to
subclasses handle object select among several
creation. variations of a product.

A factory method
returns a product that
is typically used within
methods defined in
the superclass.

A factory method isolates the client
(i.e. the code in the superclass such
as orderPizza()) from knowing what
kind of conduct Product is actually
created.

Software Engineering

The Factory Method Pattern defines an interface for creating an
object, but lets subclasses decide which class to iinstantiate. Factory
Method lets a class defer instantiation to subclasses.

Product
{k

ConcreteProduct

Creator

factoryMethod()
anOperation()

4

A

ConcreteCreator

N

factoryMethod()

‘ Design Thinking

Dronology is designed
to manage the flight of
virtual and physical
drones.

Drones are assigned
unique launch locations
(bases). Flight plans
are loaded from XML
and the drones fly their
routes without crashing
into each other.

Drones may fly solo, in
a platoon, or in more
complex formations.

Drones must not crash
into each other.

14

Software Engineering

‘ Requirements

Requirement

A fleet of drones will be generated at simulation startup.

The system will either be in physical mode or virtual mode but never simultaneously in both.
When the syste physical mode only physical drones will be used.

When the system is in virtual mode only virtual drones will be used.

The system will not switch modes at runtime.

Flight plans will be specified in XML

Operator will select a flight plan to import

Each flight plan will include a set of waypoints specified in terms of coordinates.

Each flight plan will be assigned to an available drone in the fleet.

Each flight plan will be in one of three states: pending, current, completed.

Flights will be assigned to drones in the order in which they are received.

The bounds of the flight zone will be specified in terms of latitude and longitude coordinates.

Drones will only be displayed an central cammand screens if they are located within flight zone baunds.

A drone shall regularly transmit its current GPS coordinates to central command.

Central command will track the current coordinates of all drones in flight.

When a flight plan is assigned to a drone, the drone will fly to the targeted altitude of the starting location.

During the flight the drone travel from one waypoint to another as ordered by the flight plan.

Upon reaching the final waypoint the drone shall land.

A drone will always be in one of five flight modes: grounded, awaitingTakeOff, taking-off, flying, or landing.

A drone will always be in one of three safety modes: normal, diverted, halted

Minimum separation distance shall always be maintained between all drones.

A safety component shall direct the flight path of any drone which approaches the minimum separation distance of another drone.
When drones take-off from a shared location, their flight shall be staggered to prevent violation of minimum separation distance.

When two or more drones approach minimum separation distance violations will be avoided through forming an aerial roundabout.

Drones must maintain sufficient voltage to return to base.

Drones shall ascend vertically during takeoff until the targeted altitude has been reached.

The maximum number of drones flying in the flight zone shall be limited to two.

While the system is in virtual model, a flight simulator will compute the current location of each drone in flight.

Currently 53 requirements implemented

Fleet Management
Runtime Mode
Runtime Mode
Runtime Mode
Runtime Mode
Flight Plans

Flight Plans

Flight Plans

Flight Plans

Flight Plans

Flight Plans

Flight Zone Management
Display

Drone

Fleet Management
Drone

Drone

Drone

Drone

Safety Management
Safety Management
Safety Management
Safety Management
Safety Management
Drone

Drone

Flight Zone Management
Drone

16

Software Engineering

| High Level Architecture

= * *| State
Dronology) GrO}md
» Station
Commands
Load Create In this design activity we will focus on the Java-
based Dronology system.
(ML XML X i . . .
Your task is to design parts of a solution based on
Flight plans your current understanding of what the system
does.
For this exercise your task is to think of ways to
include some of the Design Patterns we’ve
learned in this course so far.

‘ Example: Factory Method Pattern

«=lava Class=» «=lava Class=»
(3 PhysicalDrone (® VirtualDroneFleetFactory
mdel. drone. runtime: medel. drone. flest

<» makeDroneAtUniqueBase(BaseManager):ManagedDrone

<<Java Class=>
(3 PhysicalDroneFleetFactory ==lava Class=»

model drone. flest (® VirtualDrone
model. drone. runtime

<» makeDroneAtUniqueBase(BaseManager):ManagedDrone

==lava Class>»>
(9 DroneFleet

model. drone. flest

«=lava Class»=

<<Java Interfaces» G4 DroneFleetFactory
@ iDrone model drone. flest
miodel. drone. runtime < createDronelD{int):String

<» readBases()void
&}qmekeDmneAb‘.r'. igueBase(BaselM: guL Drone

I used the
Factory Method
Pattern because. |

These are some of the classes in the design.

Work in groups of 2-3 to sketch out the
UML class diagram that organizes these
classes into a factory method pattern.

Software Engineering

‘ Composite Pattern:

Decide where you might use the Composite Pattern in the Dronology System.
Sketch out a UML diagram showing its possible use.

I used the
Composite Pattern
because...

Observer Pattern:

Decide where you might use the Observer Pattern in the Dronology System.
Sketch out a UML diagram showing its possible use.

I used the
Observer Pattern
because...

Y. %

10

Software Engineering

| Strategy Pattern:

Decide where you might use the Strategy Pattern in the Dronology System.
Sketch out a UML diagram showing its possible use.

I used the
Strategy Pattern
because...

Team Projects

£ sTerunG ‘

Battery Safety Assurance

© An interactive, GUI based
application for
crowdsourcing threat
modeling activities for
software projects. (Requires
some data mining)

© An eclipse-based tool for supporting the creation of
Safety Assurance Cases.

O A utility for interactively visualizing the evolution of requirements and
source code. Sits on top of a Github repository

3-4 people per team.
Max three teams per project.

@ An eclipse plugin for supporting impact analysis in
Safety Critical Systems. Includes visualization.

11

