
Software Engineering

1

SE350: PRINCIPLES OF OBJECT ORIENTED DESIGNCSC40232: SOFTWARE ENGINEERING

Prof. Jane Cleland‐Huang
Two more patterns!!
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

UML Question

http://aviadezra.blogspot.com/2009/05/uml-association-aggregation-composition.html

Aggregation implies a relationship where
the child can exist independently of the
parent. Example: Class (parent) and
Student (child). Delete the Class and the
Students still exist.

Composition implies a
relationship where the child
cannot exist independent of the
parent. Example: House (parent)
and Room (child). Rooms don't
exist separate to a House.

http://stackoverflow.com/questions/1644273/what-is-the-difference-between-aggregation-composition-and-dependency

Software Engineering

2

Chips Challenge

4

Concurrent Processes
 Processes: Self-contained execution

environment. A process has its own memory
space. Communication between processes
typically uses Inter Process Communication
(IPC) resources such as pipes and sockets.

 Threads: Lightweight processes – exist within a
process. Share process’s resources including
memory and open files.
A Java application starts with one main thread
but we can create additional ones.

Software Engineering

3

Java FX Thread

Animation timer goes
in the start method.

Only add sleep if you
want to slow things
down, but it can be a
good idea.

Anything you want to
happen in each loop
goes here!

6

About using threads
 Downside: Can be harder to debug.

 Upside: Fun, interactive programs to write.

 Limitation: We will IGNORE synchronization
problems. You will learn about this in your
class on Distributed Systems.

Software Engineering

4

7

Two Options
public class HelloRunnable implements Runnable {

public void run() {
System.out.println("Hello from a thread!");

}
public static void main(String args[]) {

(new Thread(new HelloRunnable())).start();
}

}

The Runnable interface
defines a single method,
run, meant to contain the
code executed in the thread.
The Runnable object is
passed to the Thread
constructor

public class HelloThread extends Thread {
public void run() {

System.out.println("Hello from a thread!");
}
public static void main(String args[]) {

(new HelloThread()).start();
}

}

The thread class extends
thread and implements run.

Design Pattern Overview

Software Engineering

5

Design Pattern Overview

Singleton Example:

Most languages provide
some sort of system or
environment object that
allows the language to
interact with the native
operating system. Since the
application is physically
running on only one
operating system there is
only ever a need for a single
instance of this system
object. The singleton pattern
would be implemented by the
language runtime to ensure
that only a single copy of the
system object is created and
to ensure only appropriate
processes are allowed access
to it.

Object Creational

http://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

Software Engineering

6

Singleton
Object Creational

Singleton
Object Creational

Software Engineering

7

State Example:

An email object can
have various states, all
of which will change
how the object handles
different functions.

To avoid conditional
statements in most or
all methods there
would be multiple state
objects that handle the
implementation with
respect to their
particular state. The
calls within the Email
object would then be
delegated down to the
appropriate state object
for handling.

Object Behavioral

http://www.tutorialspoint.com/design_pattern/state_pattern.htm

14

Transform State Machine to Code

Out of
Gumballs

Step 1: Identify states

final static int SOLD_OUT = 0;
final static int NO_QUARTER=1;
final static int HAS_QUARTER=2;
final static int SOLD=3;

int state = SOLD_OUT;

Step 2: Create instance variables to hold
current state and to define values for each
state.

inserts quarter

turns crank

ejects quarter

dispense
Step 3:
Identify actions

Software Engineering

8

15

Create a class that acts as the state machine

public void insertQuarter() {
if (state == HAS_QUARTER){

System.out.println(“You can’t insert another quarter”);
} else if (state == SOLD_OUT) {

System.out.println(“Returning your Quarter. The machine
is sold out”);

} else if (state == SOLD){
System.out.println(“Please wait for your gumball”);

} else if (state = NO_QUARTER){
state = HAS_QUARTER;
System.out.println(“You inserted a quarter.

Now turn the crank”);

16

Software Engineering

9

17

18

Test the
gumball
machine

Software Engineering

10

19

Solution

20

Software Engineering

11

21

22

Software Engineering

12

23

public class Gumball Machine{
State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;

State state = soldOutState;
int count = 0;

public GumballMachine(int numberGumBalls){
soldOutState = new SoldOutState(this);
noQuarterState = new NoQuarterState(this);
hasQuarterState = new HasQuarterState(this);
soldState = new SoldState(this);
this.count = numberGumBalls;
if(numberGumBalls>0){

state = newQuarterState;
}

}

Any errors?

24

public void insertQuarter(){
state.insertQuarter();

}
public void ejectQuarter(){

state.ejectQuarter();
}
public void turnCrank(){

state.turnCrank();
state.dispense();

}
void setState(State state){

this.state = state;
}
void releaseBall(){

System.out.println(“Here is your gumball”);
if(count !=0){

count = count – 1;
}

}
}

Software Engineering

13

25

26

What have we done?

1. Localized the behavior of each state into its own
class.

2. Removed all of the problematic “if” statements
that would have been difficult to maintain.

3. Closed each state for modification – while leaving
the the Gumball Machine open to extension by
adding new state classes.

4. Created a code base and class structure that
matches the Gumball Machine state diagram.

Software Engineering

14

27

State Design Pattern

Team Projects

 An eclipse-based tool for supporting the creation of
Safety Assurance Cases.

 A utility for interactively visualizing the evolution of requirements and
source code. Sits on top of a Github repository

 An interactive, GUI based
application for
crowdsourcing threat
modeling activities for
software projects. (Requires
some data mining)

 An eclipse plugin for supporting impact analysis in
Safety Critical Systems. Includes visualization.

3-4 people per team.
Max three teams per project.

Software Engineering

15

Chain of Responsibility
Example:

Exception handling.
When an exception
is thrown in a method
the runtime checks to
see if the method
has a mechanism to
handle the exception
or if it should be
passed up the call
stack.

When passed up the
call stack the
process repeats until
code to handle the
exception is
encountered or until
there are no more
parent objects to
hand the request to.

Object Behavioral

Command Example:

Job queues are widely
used to facilitate the
asynchronous
processing of
algorithms. By utilizing
the command pattern
the functionality to be
executed can be given
to a job queue for
processing without any
need for the queue to
have knowledge of the
actual implementation
it is invoking. The
command object that is
enqueued implements
its particular algorithm
within the confines of
the interface the queue
is expecting.

http://www.tutorialspoint.com/design_pattern/command_pattern.htm

Object Behavioral

Software Engineering

16

Command

http://www.tutorialspoint.com/design_pattern/command_pattern.htm

Object Behavioral

Iterator Example:

The Java
implementation of the
iterator pattern allows
users to traverse
various types of data
sets without worrying
about the underlying
implementation of the
collection. Since clients
simply interact with the
iterator interface,
collections are left to
define the appropriate
iterator for themselves.
Some will allow full
access to the
underlying data set
while others may
restrict certain
functionalities, such as
removing items.

Object Behavioral

http://www.tutorialspoint.com/design_pattern/iterator_pattern.htm

Software Engineering

17

Observer Example:

This pattern can be
found in almost every
GUI environment.
When buttons, text, and
other fields are placed
in applications the
application typically
registers as a listener
for those controls.
When a user triggers an
event, such as clicking
a button, the control
iterates through its
registered observers
and sends a notification
to each.

Object Behavioral

http://www.tutorialspoint.com/design_pattern/observer_pattern.htm

Strategy Example:

When importing data
into a new system
different validation
algorithms may be run
based on the data set.
By configuring the
import to utilize
strategies the
conditional logic to
determine what
validation set to run
can be removed and the
import can be
decoupled from the
actual validation code.
This will allow us to
dynamically call one or
more strategies during
the import.

Object Behavioral

http://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

Software Engineering

18

Template Example:

A parent class,
InstantMessage, will likely
have all the methods
required to handle sending
a message. However, the
actual serialization of the
data to send may vary
depending on the
implementation. A video
message and a plain text
message will require
different algorithms in
order to serialize the data
correctly. Subclasses of
InstantMessage can provide
their own implementation
of the serialization method,
allowing the parent class to
work with them without
understanding their
implementation details.

Class Behavioral

http://www.tutorialspoint.com/design_pattern/template_pattern.htm

Visitor
Example:

Calculating taxes in
different regions on sets of
invoices would require
many different variations of
calculation logic.
Implementing a visitor
allows the logic to be
decoupled from the
invoices and line items.
This allows the hierarchy of
items to be visited by
calculation code that can
then apply the proper rates
for the region. Changing
regions is as simple as
substituting a different
visitor.

Object Behavioral

http://www.tutorialspoint.com/design_patter
n/visitor_pattern.htm

Software Engineering

19

Adapter
Example:

A billing application needs
to interface with an HR
application in order to
exchange employee data,
however each has its own
interface and
implementation for the
Employee object. In
addition, the SSN is stored
in different formats by each
system. By creating an
adapter we can create a
common interface between
the two applications that
allows them to
communicate using their
native objects and is able to
transform the SSN format
in the process.

Class and Object Structural

http://www.tutorialspoint.com/design_pattern/adapter_pattern.htm

Bridge
Example:

The Java Virtual Machine
(JVM) has its own native set
of functions that abstract the
use of windowing, system
logging, and byte code
execution but the actual
implementation of these
functions is delegated to the
operating system the JVM is
running on. When an
application instructs the JVM
to render a window it
delegates the rendering call
to the concrete
implementation of the JVM
that knows how to
communicate with the
operating system in order to
render the window.

Object Structural

http://www.tutorialspoint.com/design_pattern/bridge_pattern.htm

Software Engineering

20

Composite Example:

Sometimes the information
displayed in a shopping cart
is the product of a single
item while other times it is
an aggregation of multiple
items. By implementing
items as composites we can
treat the aggregates and the
items in the same way,
allowing us to simply iterate
over the tree and invoke
functionality on each item.
By calling the getCost()
method on any given node
we would get the cost of
that item plus the cost of all
child items, allowing items
to be uniformly treated
whether they were single
items or groups of items.

Object Structural

http://www.tutorialspoint.com/design_pattern/composite_pattern.htm

Decorator Example:

Many businesses set up their
mail systems to take
advantage of decorators.
When messages are sent
from someone in the
company to an external
address the mail server
decorates the original
message with copyright and
confidentiality information.
As long as the message
remains internal the
information is not attached.
This decoration allows the
message itself to remain
unchanged until a runtime
decision is made to wrap the
message with additional
information.

Object Structural

http://www.tutorialspoint.com/design_pattern/decorator_pattern.htm

Software Engineering

21

Facade Example:

By exposing a set of
functionalities through a
web service the client code
needs to only worry about
the simple interface being
exposed to them and not the
complex relationships that
may or may not exist behind
the web service layer. A
single web service call to
update a system with new
data may actually involve
communication with a
number of databases and
systems, however this detail
is hidden due to the
implementation of the
façade pattern.

Object Structural

http://www.tutorialspoint.com/design_pattern/facade_pattern.htm

Abstract Factory Example:

Email editors support multiple
formats including plain text,
rich text, and HTML. If the
message is plain text then there
could be a body object that
represented just plain text and
an attachment object that
simply encrypted the
attachment into Base64. If the
message is HTML then the
body object would represent
HTML encoded text and the
attachment object would allow
for inline representation and a
standard attachment. By
utilizing an abstract factory for
creation we can ensure that the
appropriate object sets are
created based upon the style of
email that is being sent.

Object Creational

http://www.tutorialspoint.com/design_pattern/abstract_factory_pattern.htm

Software Engineering

22

Builder Example:

A file transfer application
could possibly use many
different protocols to send
files and the actual transfer
object that will be created
will be directly dependent
on the chosen protocol.
Using a builder we can
determine the right builder
to use to instantiate
the right object. If the
setting is FTP then the FTP
builder would be used when
creating the object.

Builds a complex object using simple objects and using a step by step approach. This
type of design pattern comes under creational pattern as this pattern provides one of
the best ways to create an object. A Builder class builds the final object step by step.

http://www.tutorialspoint.com/design_pattern/builder_pattern.htm

Object Creational

Factory Method Example:

Many applications have
some form of user and
group structure for
security. When the
application needs to
create a user it will
typically delegate the
creation of the user to
multiple user
implementations. The
parent user object will
handle most operations
for each user but the
subclasses will define the
factory method that
handles the distinctions
in the creation of each
type of user.

Object Creational

http://www.tutorialspoint.com/design_pattern/factory_pattern.htm

Software Engineering

23

Prototype Example:

Rates processing engines
often require the lookup of
many different configuration
values, making the
initialization of the engine a
relatively expensive process.
When multiple instances of
the engine is needed, say for
importing data in a multi-
threaded manner, the expense
of initializing many engines
is high. By utilizing the
prototype pattern we can
ensure that only a single copy
of the engine has to be
initialized then simply clone
the engine to create a
duplicate of the already
initialized object.

Object Creational

http://www.tutorialspoint.com/design_pattern/prototype_pattern.htm

Competition Time

http://www.vincehuston.org/dp/patterns_quiz.html

