Software Engineering

CSC40232: SOFTWARE ENGINEERING

Prof. Jane Cleland-Huang
Two more patterns!!
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

‘ UML Question

class Composition class Aggregation)
Persan Order Car
- m_Hand: Hand - m_Engine: Engine - m_Engine: Engine
- m_Leg: Leg - m_Wheel: Wheel[2]
Le Hand
g Engine Wheel

Composition implies a
relationship where the child
cannot exist independent of the

Aggregation implies a relationship where
the child can exist independently of the
parent. Example: Class (parent) and

parent. Example: House (parent) Student (child). Delete the Class and the
and Room (child). Rooms don't . .
Students still exist.

exist separate to a House.

http://stackoverflow.com/questions/1644273/what-is-the-difference-between-aggregation-composition-and-dependency

Software Engineering

| Chips Challenge

F Chip's Challengei LESSON &
Game Optiong Level Heg

‘ Concurrent Processes

m Processes: Self-contained execution
environment. A process has its own memory
space. Communication between processes
typically uses Inter Process Communication
(IPC) resources such as pipes and sockets.

m Threads: Lightweight processes — exist within a
process. Share process’s resources including
memory and open files.

A Java application starts with one main thread
but we can create additional ones.

Software Engineering

‘ Java FX Thread

public static void main(String[] args) {

}

new CatAndMouseGameFX();
Launch(args);

@0verride
public void start(Stage stage) throws Exception {

final Pane root = new AnchorPane();

Scene scene = new Scene(root,800,800);

s . e j 2 q q

5:::_:53???&(“ vl Animation timer goes
in the start method.

root.getChildren().add(mouse.getImageView());

for(Cat cat: cats)

root.getChildren().add(cat.getImageView()); Ol’lly add Sleep ifyou
new AnimationTimer() { ORI D SIOW things
goverride down, but it can be a
public void handle(long now) { ood idea
try { 8 :

Thread.sleep(1);
} catch (InterruptedException &) {
TODO Auto-generated catch block
e. pr':.ntstack'rr‘ace(),
}
mouse.mouseMove(); Anything you want to

}. st: rt(); happen in each loop
goes here!

| About using threads

Downside: Can be harder to debug.
Upside: Fun, interactive programs to write.

Limitation: We will IGNORE synchronization
problems. You will learn about this in your
class on Distributed Systems.

Software Engineering

| Two Options

public class HelloRunnable implements Runnable { The Runnable interface

public void run() { defines a single method,
System.out.println("Hello from a thread!"); run, meant to contain the

} code executed in the thread.

public static void main(String args[]) { The Runnable object is
(new Thread(new HelloRunnable())).start(); passed to the Thread

} constructor

}

public class HelloThread extends Thread {
public void run() {
System.out.println("Hello from a thread!");
}
public static void main(String args[]) {
(new HelloThread()).start();
}
}

The thread class extends
thread and implements run.

‘ Design Pattern Overview

Creational Patterns: Used to construct objects such that
they can be decoupled from their implementing system.

Structural Patterns: Used to form large object structures
between many disparate objects.

Behavioral Patterns: Used to manage algorithms,
relationships, and responsibilities between objects.

Software Engineering

| Design Pattern Overview

Object Scope: Deals with object relationships that can be

changed at runtime.

Class Scope: Deals with class relationships that can be changed

at compile time.

C | Abstract Factory S Decorator C Prototype

S Adapter S Facade S Proxy

S Bridge € Factory Methed B Observer

€ Builder S Flyweight € Singleton

B Chain of B Interpreter B State
Responsibility B lterator B Strategy

B Command B Mediator B Template Method
Composite B Memento B Visitor

| Singleton Example:

Object Creational Most languages provide
some sort of system or
environment object that

Singleton allows the language to

-static uniquelnstance
-singletonData

+static instance()
+singletonOperation()

Purpose
Ensures that only one instance of a class is allowed within a system.

Use When

= Exactly one instance of a class is required.
= Controlled access to a single object is necessary.

http://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

interact with the native
operating system. Since the
application is physically
running on only one
operating system there is
only ever a need for a single
instance of this system
object. The singleton pattern
would be implemented by the
language runtime to ensure
that only a single copy of the
system object is created and
to ensure only appropriate
processes are allowed access
to it.

Software Engineering

| Singleton

Object Creational

1 package controller.flightZone;

6%

WU W R R MR

D DD e O

import controller.helper.Coordinates;

Establishes geographical zone for the simulation
public class ZoneBounds {

long westlongitude
long eastlongitude
loang nerthLatitude
long southLatitude
int maxAltitude = @;

private static ZoneBounds instance = null;
protected ZoneBounds() {}

Return an instance of ZoneBounds)
public static ZoneBounds getInstance() {
if{instance == null) {
instance = new ZoneBounds();
¥

return instance;

}

setup the boundary of the Zone based on top left and bottem right coordinates
public veid setZoneBounds(long northlLat, long westlLon, long southLat, long eastlL:

* Checks whether a coordinate iz inside the zonel
public boolean inBounds(Cosrdinates ceords) throws FlightZensException{

* Get westerly longitude degres|
public leng getWestlongitude(){

| Singleton

Object Creational

1 package controller.helper;
2eimport java.awt.Point;
B

e

* Given the window coordinates for the flight simulation, and the area of the map

14 public class DecimalDegreesToXYConverter {

15
16
17
18
15
20

M
i

W R R R R R R RSB
W oB R

@0 o

Wow W w W
- O B e

wow
-

38
39
48

d42e
46

ZoneBounds zoneBounds;
long xRange = @; // X coordinates in range of @ to x

long yRange = @; // Y coordinates in range of @ to y

double xScale = 9.9; // The scale that transforms longitude to x coordinates
double yScale = 8.9; // The scale that transforms latitude to y coordinates
long latitudeOffset=@;

long longitudeOffset=0;

int reservedlLeftHandSpace =

long zeneXRange = @1;
long zeoneYRange = 81;

private static DecimalDegreesToXYConverter instance = null;
protected DecimalDegreesToXYConverter() {}

* Return an instance of DecimalDegreesToXyConverter|

greturn

.
public static DecimalDegreesToX¥YConverter getInstance() {
if(instance == null) {
instance = new DecimalDegreesToXYConverter();
}

return instance;

}

* Setup
public void setUp(long xSize. long vSize. int reservedlLeftHandSpace){

Software Engineering

‘ State

Object Behavioral

Context
+request()

‘ <<interface>> ‘

State
‘ +handle() |
[ZF‘ |
‘ ConcreteState 1 | ‘ ConcreteState 2 |
‘ +handle() | ‘ +handle() |

Purpose

Ties object circumstances to its behavior, allowing the object
to behave in different ways based upon its internal state.
Use When

= The behavior of an object should be influenced by its state.
= Complex conditions tie object behavior to its state.

= Transitions between states need to be explicit.

http://www.tutorialspoint.com/design_pattern/state_pattern.htm

Example:

An email object can
have various states, all
of which will change
how the object handles
different functions.

To avoid conditional
statements in most or
all methods there
would be multiple state
objects that handle the
implementation with
respect to their
particular state. The
calls within the Email
object would then be
delegated down to the
appropriate state object
for handling.

Step 1: Identify states state.

‘ inserts quarter ‘ ‘ dispense ‘

Step 3:
Identify actions

turns crank

‘ ejects quarter ‘

Transform State Machine to Code

v H final static int SOLD_OUT = 0;
“or‘e as . o
Quarter final static int NO_QUARTER=1;

final static int HAS_ QUARTER=2;

o ot @ int state = SOLD_OUT;

final static int SOLD=3

Step 2: Create instance variables to hold
current state and to define values for each

14

Software Engineering

Create a class that acts as the state machine

public void insertQuarter() {

if (state == HAS_QUARTER){
System.out.printIn(“You can’t insert another quarter”);

} else if (state == SOLD_OUT) {
System.out.printIn(“Returning your Quarter. The machine

is sold out”);

} else if (state == SOLD){

System.out.printIn(“Please wait for your gumball”);

} else if (state = NO_QUARTER){

state = HAS_QUARTER;
System.out.printIn(“You inserted a quarter.
Now turn the crank”);

15

watth the
Sour states they
H;i:“ f\;fﬁhz‘\;r&umbawi state diagram
b 'S N
Heve's the instance variable that is l?mma to
keep bratk of the turrent state we're
We start in the SOLD_OUT state

public class /
1a tic OLD = 0;
R :

We have a setond instante varigble £hat
keeps track of the number of gumballs in
the mathine

The constructor Lakes an initial
inventory of gumballs. (£ the inventory
isn't zevo, the mathine entevs state
NO_QUARTER, meaning it is waiting for
someone to insert 3 quarter, otherwise it
stays in the SOLD_OUT state

New we start \m\ﬂcnednbmj
meth
C the attions 3s ethods - .
warter() { £ - TAIar{:Iv is alveady inserted
we fell the customer

S QUARTER) [
1tln (“You can’t insert anothe uarter”); t 4
1 n(“You ca nsert another quarter”); obhorvise we actept the

TEiffﬁJARTER) { quarter and Leansition Lo the
! HAS_QUARTER state

t insert a quarter, the machine is sold out”);

we're already giving you a gumball®);

l L

IF the custemer just bought 3 and if the mathine i sold
qumball he needs to wait wntil the Sk e rlj!f-i the auarter
bransaction is complete before

mserting another quarter.

16

Software Engineering

€ Now, 1F Ihe tutbompr dries bo vomove the sarter
IF‘_H\(«J'.—J{n_-:
—— fuarw 14 and 42 bk to
& e NO_AUARTER dhate

e Oherwise, if bhere iw't
et a quartes®)s ot et i b give i hack

Vi —

t, you haven't inscrted a qu

K
! W o tan't heet iF Ehe mathine bn eold 1§ the cxatomer jurt
sk, 1£ doew't accept aparterd Burmed bhe trank, we ton't

~ .
e d rekund; he sveady
‘{ The eutbamer dries to tum the triok his the guball

™
\l gone’s bryieg ko cheat the mathene

We meed 4

searter first

We can't delier
mball; theve
vt mint

Suceed They gek 3 qumbal Chamye
the shate &0 SOLD and call the
mathim's deipemsel] methad
_ Wi n e
K oL sbate 9

.(_“,'I

. tundle the
Here'd v‘*"; '.:, emibine?

ine’s thate B
athpraise, weTe
5 yparter

sek e math
- coLD T
badk e rot WS

None of these thoeld
ever happen, but f

1 they do, we gve "em an
) ’ ervar, mit & gbll

17

.) . Load it vp with
public class GumballMachineTestDrive { Live 3um|:aus total.

public static void main(String[] args) {
GumballMachine gumballMachine = new GumballMachine(5);

System.out.println(gumballMachine);

S~ Print out the state of the machme. —

gumballMachine.insertQuarter () ; = Throw a q\,,a‘,{zr o
gumballMachine.turnCrank();
S Tum the evank; we should get owr 5mba|l.
System.out.println{gumballMachine);

(‘*__\ Print ot the state of the machine, again. _

gumballMachine.insertQuarter () ; -

gumballMachine.ejectQuarter () ; é‘\ﬂmw a ﬁuar‘{'.er in. %

gumballMachine.turnCrank(); Ask -Far i back

System.out.println{gumballMachine) K‘_\ Tum the trank; we shouldn’t get our qumball.
Print out the state of the mathine, again. L

gumballMachine.insertQuarter();

gumballMachine.turnCrank(); é‘_: Throw a quarter in... =
gumballMachine.insertQuarter () ; < Tun the crank; we should aet our gunbaﬂ
gumballMachine.turnCrank(); T Throw a quarter in

Turn the crank; we should gek. aur qumball)

gumballMachine.ejectQuarter(); &\‘
Ask for 3 quarter back we didn’t put in.

System.out.println{gumballMachine);

K‘-‘ Print vt the state of the maching, 30ain

gumballMachine.insertQuarter (); o o~
gumballMachine.insertQuarter(); & Throw TWO quarters in
h gumballMachine.turnCrank(); - Tum the trank; we should gd: our 3umba”
Test t e gumballMachine.insertQuarter();
gumballMachine.turnCrank(); T Now for the stress tggﬁ.,a..

gumballMachine.insertQuarter ();
gumba" gumballMachine.turnCrank();
machine

System.out.println(gumballMachine); Print that machine stite one more fime. ~——

Software Engineering

Solution

a First, we’re going to define a State interface that
contains a method for every action in the Gumball
Machine.

e Then we’re going to implement a State class for
every state of the machine. These classes will be
responsible for the behavior of the machine when it
is in the corresponding state.

e Finally, we’re going to get rid of all of our conditional
code and instead delegate to the state class to do
the work for us.

19
First let’s create an interface for State, which all our states implement:
Heve's bhe inberface For al skates The methods map diecily
b 3tbons Ehat conld happen o the Guebsll Maching (Rhese ave
the xame methads & i the previous code)
$'
“anturtaces>
Then take each state in our design L s |
and encapsulate it in a class that el
implements the State interface. Sameng
|
Var V
To figere ovt whit
shakes we need, we lock - SoldStam :
at vious tode / FeanQuarer) Insariianar) F—— P
at our previc). — e s e
"'// ey breCrank() [t SamCrani}
[= depem0 kel o]
W
AN ! ? e
and we map eath state
o divectly to a tlass
20

10

Software Engineering

interkace.
implement the State inter
First we need to implemen We get passed a vefevente to

the Qumball Machine through the
eorstructor. We've just going to

public class MoQuarterState implements State | stash this in an instante vaviable.
GumballMachine gumballMachine;

inseeks a quarter,
public MoQuarterState (GumballMachine gumballMachine) | |F !-Orf-c;nc n o 5: -,,“3 tre
this.gumballMachine = gumballMachine; we print 3 me El Y h
] qluar{ﬂ- was at.up{.cd and then
. k]

4 thare the machine's state to
public veoid insertQuarter(} { 4he Ha;qu{ch{a{:E-
System.out.println(“You inserted a quarter”);
gumballMachine.setState (gumballMachine.getHasQuartersState()); o

You'll see how these

}
" work in just 3 sec..

public volid ejectQuarter() |
System.out.println(®You haven’t inserted a guarter”);

! =" You cant get money
back '..F gu never Gave
public wvoid turnCrank() { it to us!

System.out.println(®You turned, but there’s no quarter”);
1
i And, you tan't get 3 gqumball
public void dispense() | if You don't pay us.
System.out.println(“You need to pay first”); K—-\ B
} We tan't be dis?ens'lna

1 3\mba||s wl{'.hou{- Pa‘}‘mchf,
21
public class GumballMachine |
final static int SOLD _QUT = 0; . date Lhe
final static int NO _QUARTER = 1; |n the GumballMathine: we U?,;{hcr Fhan
final static int HAS_QUARTER = 2; @F\ tode to use the rew tlasses v e e
final static int SOLD = 3; bhe statie inbegers- The toﬂl;‘ v:havt
o one tlass
wnila, exept that in one €4
int state = SOLD_OUT; smlan in the other objects
. inkeggrs and in The
int count = 0; inteyer
0ld tode public class GumballMachine {

State soldOutState;

State noQuarterState;

State hasQuarterState;

State soldState;

/1 State state = soldOutState;
int count = 0;
New eode
All the State objects are treated
!
and assigned in the constructor. This now holds 3
Shate o\:jut, ot
an integer- 22

11

Software Engineering

public class Gumball Machine{
State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;

State state = soldOutState;
int count =0;

public GumballMachine(int numberGumBalls){
soldOutState = new SoldOutState(this);
noQuarterState = new NoQuarterState(this);
hasQuarterState = new HasQuarterState(this);
soldState = new SoldState(this);
this.count = numberGumaBalls;
if(numberGumBalls>0){ Any errors?

state = newQuarterState;

public void insertQuarter(){
state.insertQuarter();

!

public void ejectQuarter(){
state.ejectQuarter();

!

public void turnCrank(){
state.turnCrank();
state.dispense();

!

void setState(State state){
this.state = state;

!

void releaseBall(){
System.out.printin(“Here is your gumball”);
if(count 1=0){

count = count—1;

}

!

1

24

12

Software Engineering

ublic

4 'bin't,\a{‘.:d
} e
When the t.r_at.cg is e
= e pass v are tf“r 5
class s State { :‘u"bdnmamnc rh,‘s ;M :
-tn Lransition Lhe math

GumballMa

d,“crtn{ skate

Hn ‘“a,?‘;.—o?r.a{:c
L/ ekion Lor this
el s{d{it-

_—— Return the tustomer's
Cfi glua({fl’ ar\d
e g T cardes add . bransibion back to the
I : et .getNoQuarterState()); N(,Quartifsiatz'

s When the evank is
burned we fransition
the mathime to the
GoldState state by
ealling its setStatel)
n-eth::'d and passing it
the SoldState object
The ScldState o'q]e{.)c
is vebrieved by the
yetSel dStatel)
getter method
(Lhere is one of these
getter methods For
cath statel.

What have we done?

1. Localized the behavior of each state into its own
class.

2. Removed all of the problematic “if” statements
that would have been difficult to maintain.

3. Closed each state for modification — while leaving
the the Gumball Machine open to extension by
adding new state classes.

4. Created a code base and class structure that
matches the Gumball Machine state diagram.

26

13

Software Engineering

State Design Pattern

The Conkext is the elass that
tan have a rumber of internal
states |n owr example, the
QumballMathine is the Context

Context

The State interface defines 3 common
interface for all eonerete states; the
states all implement the same interface,
s0 {h:}' are ihter-:hanacablc-

> State

S

request()

/’V siatethandle{: '

Whenever £he request()
is made on the Context
it is delegated {o the
state o handle.

handle()

ConcreteStateB

)

handle() handlef)

ConcreteStateA I

MQ“T Contrel,

states are Possible.

N

ContreteStates handle vequests Lrom the
Conkert Eath ContreteState provides its
own implementation for a vequest. In {-.,h.s
way, when the Context changes state, its
behavior will Iﬂnahsc as well
27

‘ Team Projects

v

gl

Battery Safety Assurance

O An eclipse-based tool for supporting the creation of
Safety Assurance Cases.

@ An eclipse plugin for supporting impact analysis in
Safety Critical Systems. Includes visualization.

© An interactive, GUI based
application for
crowdsourcing threat
modeling activities for
software projects. (Requires
some data mining)

(4 N utility for interactively visualizing the evolution of requirements and
source code. Sits on top of a Github repository

3-4 people per team.
Max three teams per project.

14

Software Engineering

| Chain of Responsibility

Object Behavioral EXamEle:

successor Exception handling.
When an exception
is thrown in a method
the runtime checks to
see if the method
has a mechanism to

| | handle the exception

<<interface>>

Client '7 Handler

+handlerequest()

| ConcreteHandler 1] | ConcreteHandler 2 W or if it should be
| +handlerequest() J | +handlerequest() J passed up the call
stack.
Purpose
Gives more than one object an opportunity to handle a request When passed up the
by linking receiving objects together. call stack the
Use When process repeats until
= Multiple objects may handle a request and the handler code to handle the
doesn't have to be a specific object. exception is
= A set of objects should be able to handle a request with the encountered or until
handler determined at runtime. there are no more
= A request not being handled is an acceptable potential parent objects to
outcome. hand the request to.
‘ Command Example:

Object Behavioral .
Job queues are widely

W] Invoker used to facilitate the
asynchronous

ConcreteCommand

+execute() processing of
algorithms. By utilizing
the command pattern
R \—D‘ Command | the functionality to be
eceiver pr—— | :

executed can be given
to a job queue for
processing without any
need for the queue to

Purpose
Encapsulates a request allowing it to be treated as an object.
This allows the request to be handled in traditionally object

based relationships such as queuing and callbacks. have kpowledge of.the
actual implementation
Use When it is invoking. The
* You need callback functionality. command object that is
= Requests need to be handled at variant times or in variant orders. enqueued implements
= A history of requests is needed. its particular algorithm
= The invoker should be decoupled from the object handlingthe within the confines of
invocation. the interface the queue

is expecting.
http://www.tutorialspoint.com/design_pattern/command_pattern.htm

15

Software Engineering

‘ Comman

d

Stock CommandPatternDema
-name :5tring uses
-quantity :int
+main{) :void
+buy{) : void
+sell() : void
uses
W
Broker
Order <<interface>> -orders :List
uses

+exgcute() : void

implemen

s T Implements

BuyStock
-stock : Stock

+BuyStock()
+execute()

Sellstock

-stock : Stock

+5ell5tock()
+executa()

http://www.tutorialspoint.com/design_pattern/command_pattern.htm

+takeOrder() : void
+placeOrdersl() :void

‘ [terator

Object Behavioral

<<interface>>
Aggregate

‘ +createlterator()

i

‘ Concrete Aggregate

‘ +createlterator() : Ci

ontext |

Purpose

Allows for access to the elements of an aggregate object
without allowing access to its underlying representation.

Use When

= Access to elements is needed without access to the entire

representation.

= Multiple or concurrent traversals of the elements are needed.

<<interface>>
Iterator

l +next()

i

| Concretelterator

| +next() : Context

= A uniform interface for traversal is needed.

= Subtle differences exist between the implementation details

of various iterators.

http://www.tutorialspoint.com/design_pattern/iterator pattern.htm

Example:

The Java
implementation of the
iterator pattern allows
users to traverse
various types of data
sets without worrying
about the underlying
implementation of the
collection. Since clients
simply interact with the
iterator interface,
collections are left to
define the appropriate
iterator for themselves.
Some will allow full
access to the
underlying data set
while others may
restrict certain
functionalities, such as
removing items.

16

Software Engineering

‘ Observer

Object Behavioral
<<interface>=
Subject i
. notifies <<interface>>
+attach(in o : Observer) Observer
+detach(in o ; Observer)
+notify() +updata()
S —
ConcreteSubject ConcreteObserver
- observes
-subjectState -observerState
+update()
Purpose

Lets one or more objects be notified of state changes in other

objects within the system.

Use When

= State changes in one or more objects should trigger behavior
in other objects

= Broadcasting capabilities are required.

= An understanding exists that objects will be blind to the
expense of notification.

http://www.tutorialspoint.com/design_pattern/observer_pattern.htm

Example:

This pattern can be
found in almost every
GUI environment.
‘When buttons, text, and
other fields are placed
in applications the
application typically
registers as a listener
for those controls.
When a user triggers an
event, such as clicking
a button, the control
iterates through its
registered observers
and sends a notification
to each.

‘ Strategy

Object Behavioral

]

<<interface>>
Strategy

+executa()
A

[]
[ConcreteStrategyA | [ConcreteStrategyB |

| +execute() | l+execute{} |

Purpose

Defines a set of encapsulated algorithms that can be swapped
to carry out a specific behavior.

Use When

= The only difference between many related classes is their

behavior.

= Multiple versions or variations of an algorithm are required.
= Algorithms access or utilize data that calling code shouldn't

be exposed to.

= The behavior of a class should be defined at runtime.
= Conditional statements are complex and hard to maintain.

http://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

Example:

‘When importing data
into a new system
different validation
algorithms may be run
based on the data set.
By configuring the
import to utilize
strategies the
conditional logic to
determine what
validation set to run
can be removed and the
import can be
decoupled from the
actual validation code.
This will allow us to
dynamically call one or
more strategies during
the import.

17

Software Engineering

‘ Template
P

Class Behavio:

AbstractClass

+templateMethod()
#subMethod()

ConcreteClass
+subMethod()

Purpose

Identifies the framework of an algorithm, allowing implementing

classes to define the actual behavior.

Use When

* A single abstract implementation of an algorithm is needed.
* Common behavior among subclasses should be localized to a

common class.

* Parent classes should be able to uniformly invoke behavior in

their subclasses.
* Most or all subclasses need to implement the behavior.

http://www.tutorialspoint.com/design_pattern/template_pattern.htm

Example:

A parent class,
InstantMessage, will likely
have all the methods
required to handle sending
a message. However, the
actual serialization of the
data to send may vary
depending on the
implementation. A video
message and a plain text
message will require
different algorithms in
order to serialize the data
correctly. Subclasses of
InstantMessage can provide
their own implementation
of the serialization method,
allowing the parent class to
work with them without
understanding their
implementation details.

| Visitor

Object Behavioral

z<zinterfaces>
Visitor m
+visitElementA(in a : ConcreteElementA)
ipe= L | 18)

. b : Cone |

?

ConcreteVisitor

+visitElementAlin a : ConcreteElementa)
+visitElementB(in b : ConcreteElementB)

<<interface=>
Element

| +accept(in v ; Visitor) |

ConcreteElementA | ["
+accept{in v : Visitor) l Tacceptiny: Visitur}J

Purpose
Allows for one or more operations to be applied to a set of objects
at runtime, decoupling the operations from the object structure.

Use When
= An object structure must have many unrelated operations
performed upon it.

= The object structure can’t change but operations performed
on it can.

= Operations must be performed on the concrete classes of an
object structure.

= Exposing internal state or operations of the object structure
is acceptable.

= Operations should be able to operate on multiple obhject

structures that implement the same interface sets

Example:

Calculating taxes in
different regions on sets of
invoices would require
many different variations of
calculation logic.
Implementing a visitor
allows the logic to be
decoupled from the
invoices and line items.
This allows the hierarchy of
items to be visited by
calculation code that can
then apply the proper rates
for the region. Changing
regions is as simple as
substituting a different
visitor.

http://www.tutorialspoint.com/design_patter

n/visitor_pattern.htm

18

Software Engineering

| Adapter

Class and Object Structural

<<interface>>
Adapter

Client

+operation()

N

ConcreteAdapter

-adaptee

Adaptee

+operation()

Purpose
Permits classes with disparate interfaces to work together by
creating a common object by which they may communicate

and interact.

Use When
* A class to be used doesn't meet interface requirements.
» Complex conditions tie object behavior to its state.

* Transitions between states need to be explicit.

+adaptedOperation()

http://www.tutorialspoint.com/design_pattern/adapter pattern.htm

Example:

A billing application needs
to interface with an HR
application in order to
exchange employee data,
however each has its own
interface and
implementation for the
Employee object. In
addition, the SSN is stored
in different formats by each
system. By creating an
adapter we can create a
common interface between
the two applications that
allows them to
communicate using their
native objects and is able to
transform the SSN format
in the process.

| Bridee

Object Structural
Abstraction

+operation()

<<interface>>
Implementor

+operationimp()

| ConcretelmplementorA |

‘ ConcretelmplementorB

| +operationimp()

‘ +operationlmp()

Purpose
Defines an abstract object structure independently of the
implementation object structure in order to limit coupling.

Use When

= Abstractions and implementations should not be bound at

compile time.
extensible.

have no impact on clients.

= Abstractions and implementations should be independently
= Changes in the implementation of an abstraction should

= Implementation details should be hidden from the client.
http://www.tutorialspoint.com/design_pattern/bridge pattern.htm

Example:

The Java Virtual Machine
(JVM) has its own native set
of functions that abstract the
use of windowing, system
logging, and byte code
execution but the actual
implementation of these
functions is delegated to the
operating system the JVM is
running on. When an
application instructs the JVM
to render a window it
delegates the rendering call
to the concrete
implementation of the JVM
that knows how to
communicate with the
operating system in order to
render the window.

19

Software Engineering

‘ Composite

Object Structural

<<interface>>
Component

= children
+operation()

+add(in ¢ : Component)
+remove(in ¢ : Component)
+getChild(in i : int)

£

| Complonent |

+operation()

+add(in c : Component)
+remove(in ¢ : Component)
+getChild(in i : int)

Purpose

Facilitates the creation of object hierarchies where each object
can be treated independently or as a set of nested objects
through the same interface.

Use When
= Hierarchical representations of objects are needed..

* Objects and compositions of objects should be treated uniformly.

http://www.tutorialspoint.com/design_pattern/composite_pattern.htm

Example:

Sometimes the information
displayed in a shopping cart
is the product of a single
item while other times it is
an aggregation of multiple
items. By implementing
items as composites we can
treat the aggregates and the
items in the same way,
allowing us to simply iterate
over the tree and invoke
functionality on each item.
By calling the getCost()
method on any given node
we would get the cost of
that item plus the cost of all
child items, allowing items
to be uniformly treated
whether they were single
items or groups of items.

‘ Decorator

Object Structural
ConcreteComponent]

<<interface>>
Comp 3
L Rt e < +operation()
+operation{)

Decorator ‘]
+operation() J
 E—

ConcreteDecorator |
-addedsState

" +operation()
+addedBehavior()

Purpose

Allows for the dynamic wrapping of objects in order to modify

their existing responsibilities and behaviors.

Use When

» Object responsibilities and behaviors should be dynamically
modifiable.

=« Concrete implementations should be decoupled from
responsibilities and behaviors.

= Subclassing to achieve modification is impractical or impossible.

= Specific functionality should not reside high in the object hierarchy.

= A lot of little objects surrounding a concrete implementation is
acceptable.

http://www.tutorialspoint.com/design_pattern/decorator _pattern.htm

Example:

Many businesses set up their
mail systems to take
advantage of decorators.
When messages are sent
from someone in the
company to an external
address the mail server
decorates the original
message with copyright and
confidentiality information.
As long as the message
remains internal the
information is not attached.
This decoration allows the
message itself to remain
unchanged until a runtime
decision is made to wrap the
message with additional
information.

20

Software Engineering

‘ Facade

Object Structural

Purpose

Use When
* A simple interface is needed to provide access to a complex
system.

Example:

By exposing a set of
functionalities through a
web service the client code
needs to only worry about
the simple interface being
exposed to them and not the
complex relationships that
may or may not exist behind
the web service layer. A
single web service call to

Supplies a single interface to a set of interfaces within a system. ~update a system with new

data may actually involve
communication with a
number of databases and
systems, however this detail

* There are many dependencies between system implementations is hidden due to the

Object Creational

<<interface>>
AbstractFactory

+createProductA()
+createProductB()

ConcreteFactory

<<interface>>
AbstractProduct
+createProductA()
+createProductB()

Purpose

Provide an interface that delegates creation calls to one or

more concrete classes in order to deliver specific objects.

Use When

= The creation of objects should be independent of the system
utilizing them.

= Systems should be capable of using multiple families of objects.

= Families of objects must be used together.

= Libraries must be published without exposing implementation
details.

= Concrete classes should be decoupled from clients.

http://www.tutorialspoint.com/design_pattern/abstract factory pattern.htm

and clients. implementation of the
= Systems and subsystems should be layered. fagade pattern.

http://www.tutorialspoint.com/design_pattern/facade_pattern.htm

| Abstract Factory Example:

Email editors support multiple
formats including plain text,
rich text, and HTML. If the
message is plain text then there
could be a body object that
represented just plain text and
an attachment object that
simply encrypted the
attachment into Base64. If the
message is HTML then the
body object would represent
HTML encoded text and the
attachment object would allow
for inline representation and a
standard attachment. By
utilizing an abstract factory for
creation we can ensure that the
appropriate object sets are
created based upon the style of
email that is being sent.

21

Software Engineering

| Builder

Object Creational

Director

+construct()

Purpose

<<interface>>
Builder

+buildPart()

ConcreteBuilder |

+buildPart()
+getResult()

Allows for the dynamic creation of objects based upon easily

interchangeable algorithms.

Use When

= Object creation algorithms should be decoupled from the system.

= Multiple representations of creation algorithms are required.
= The addition of new creation functionality without changing

the core code is necessary.

= Runtime control over the creation process is required.

Example:

A file transfer application
could possibly use many
different protocols to send
files and the actual transfer
object that will be created
will be directly dependent
on the chosen protocol.
Using a builder we can
determine the right builder
to use to instantiate

the right object. If the
setting is FTP then the FTP
builder would be used when
creating the object.

Builds a complex object using simple objects and using a step by step approach. This
type of design pattern comes under creational pattern as this pattern provides one of
the best ways to create an object. A Builder class builds the final object step by step.

http://www.tutorialspoint.com/design_pattern/builder_pattern.htm

| Factory Method

Object Creational

<<interface>>
Product

ConcreteProduct

Purpose
Exposes a method for creating objects, allowing subclasses to
control the actual creation process.
Use When
= A class will not know what classes it will be required to create.
= Subclasses may specify what objects should be created.

= Parent classes wish to defer creation to their subclasses.

Creator

+factoryMethod()
+anOperation()

i

ConcreteCreator
+factoryMethod()

http://www.tutorialspoint.com/design_pattern/factory pattern.htm

Example:

Many applications have
some form of user and
group structure for
security. When the
application needs to
create a user it will
typically delegate the
creation of the user to
multiple user
implementations. The
parent user object will
handle most operations
for each user but the
subclasses will define the
factory method that
handles the distinctions
in the creation of each
type of user.

22

Software Engineering

‘ Prototype Example:

Object Creational
Rates processing engines
often require the lookup of
many different configuration
values, making the
initialization of the engine a
J T relatively expensive process.
[concretePrototype 1 | ConcretePrototype 2 When multiple instances of

+clone() | +clone() | the engine is needed, say for

importing data in a multi-

Purpose threaded manner, the expense

Create objects based upon a template of an existing objects of initializing many engines

through cloning. is high. By utilizing the

Use When prototype pattern we can

= Composition, creation, and representation of objects should ensure that only a single copy
be decoupled from a system. of the engine has to be

= Classes to be created are specified at runtime. initialized then simply clone

= A limited number of state combinations exist in an object. the engine to create a

= Objects or object structures are required that are identical or duplicate of the already
closely resemble other existing objects or object structures. initialized object.

= The initial creation of each object is an expensive operation.

http://www.tutorialspoint.com/design_pattern/prototype_pattern.htm

| Competition Time

http://www.vincehuston.org/dp/patterns_quiz.html

23

