Software Engineering

5 ﬂg\%
P o L P R

CSC40232: SOFTWARE ENGINEERING

Professor: Jane Cleland-Huang
Canonical Form
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

‘ Canonical Form

m Canonical form is a practice that conforms to
established principles.

m When creating a class for general-purpose use,
you must include definitions for

o No argument constructor

o Object Equality

o String representation

a Cloning These items take

o Serialization additional work, but
_ the reward is robust,

o Hashing maintainable and

reusable code.

Software Engineering

Default Behavior

e (Creational methods

* Equality methods

Object () equals (Object)
Default no-argument Returns true if this
constructor instance is equal to

clone () the argument
Returns a new hashCode ()

instance of the class
Synchronizing methods

notify ()~
Sends a signal toa
waiting thread (on
the current instance)
notifyall ()¥
Sends a signal to all
waiting threads (on
the current instance)
wait()F
Forces the current
thread to wait for a
signal (on the current
instance)

Returns a hash code
based on the
instance data

* Other methods

tostring ()
Returns a string
representation of
the object
finalize ()
Performs garbage-
collection duties
getClass () F
Returns the class
object associated
with the instance

No Argument Constructor

1
2 bli 1 Student . .
B pubtic z ass studen Java only provides us with

b 4 private String name; the default (no-arg)

H é private int rollNo; constructor when we do
7= public Student(String name, int rollio) { not define any constructor
8 this.name = name; for that class on our own.
9 this.rollNo = rollNo;

0 ¥

1= public static void main(String args[])

2 { § 2 public class Student2 {

3 //This line causes a compile error: % 3 private String name;

4 // The constructor Student() is undefined. L4 private int rollNo;
Student s=new Student(); § 5}

H
17 Java adds the no
e b arg constructor
behind the scenes.
Remember that Canonical form is for § public class Student2 {
£ 1 I ki g private String name;
purpose of general reuse. It makes your = private int rolllo:

class more flexible — especially if you
also provide methods to set any
parameters.

= public Student2(){

2
3
4
5 //Default constructor added by Java.
6
7 super();

8

9

Software Engineering

| Object Equality

The Java super class java.lang.Object defines
public boolean equals(Object obj)

Checks if some other object passed to it as an argument is
equal to the object on which this method is invoked.

x ==y (Identity) x.equals(y)
tests whether x and y are two tests whether x and y reference two
references to the same object. objects with “equal” contents.
l f . t. Default implementation in
nierview Ques 10N object class simply tests for

identify.
What is the Difference between Eicftl _ctlass shogld deﬁ?e
“==" and “equals() method” ? S

Put another way:

m == returns true, if the variable reference points to the
same object in memory. This is called “shallow
comparison”.

m The equals() method calls the user implemented
equals() method, which compares the object
attribute values. The equals() method provides
“deep comparison” by checking if two objects are
logically equal.

m [f equals() method is not overriden, the default is used
and object.equals() works just like the "==" operator.

Software Engineering

| What is the output?

public class Test{ O True
public static void main(String[] args) {
Foo fool = new Foo(1); @® False
5. Foo foo2 = new Foo(2);
System.out.print(fool.equals(foo2)); i Explanatlon:
to. } z . .
1 i+ equals is overridden.
class Foo { i
[—— i » Because the argument
13- FepivEser @) < . passed to equals is of
code = c; 1
3 i type Foo, the equals .
20. public boolean equals(Feo) { i function on line 20 gets :

return false;

called — and the value

} .
“false” is returned.

public boolean equals(Object f) {

25. return true;

) Does the answer change if
line 5 reads:
) Foo foo2 = new Foo(1); ??
Test.java 7

| Javadocs Equal()

o Reflexive
An object must always be equal to itself; i.e., a.equals(a)

o Symmetric
If two objects are equal, then they should be equal in

both directions; i.e., if a.equals(b), then b.equals(a)

o Transitive
If an object is equal to two others, then they must both
be equal; i.e., if a.equals(b) and b.equals(c), then
a.equals(c)

o Non-null
An object can never be equal to null; i.e., a.equals(null)
is always false

Software Engineering

public class Point {

private static double version = 1.0;
private transient double distance;
private int x, y;
public boolean equals(Object other) {
if (other == this) return true;
if (other == null) return false;
if (getClass() != other.getClass())
return false;

Point point = (Point)other;

return (x == point.x && y == point.y);
}

| The Equals Method should Compare

m [f the argument is this;
o return true (reflexivity)

m [f the argument is null
o return false (non-null)

m [f the argument is of a
different type

o return false (symmetry)

https://www.youtube.c
om/watch?v=7V3589
CReug

| Another Example

public class Person |

private String name;
private Date birth:

public boolean equals (Object other)

if (other == this) return true:
if (other == null) return false;
if (getClass() != other.getClass()) return false:
Person person = (Person)other;
return
(name == person.name
(name != null && name.equals(person.name))) &&
(birth == person.birth

(birth != null && birth.equals(person.birth)))

) :

Software Engineering

‘ Now look at this code

import java.util.Arraylist;
import java.util.List;
What is the output?
class Thing{
final int x;
Thing(int x)}{
this.x = x;

O True

@® False
public int hashCode(){

return x;

public boolean equals(Thing other){ 5 .
return this.x == other.x; Let S OVeITlde the

) } equals method instead!

public class EqualsOverload {

public static veid main(String[] args) {
List<Thing> myThings = new ArraylList<Thing>();
myThings.add(new Thing(42));
System.out.println(myThings.contains(new Thing(42)));

More Code

2 import java.util.*; What is the output?
3
4 class Thing {
5 final int x; O True
6% Thing(int x){
7 this.x = x; @ False
8 }
9e public int hashCode() {

1@ return x;

11)

12 // public boolean equals(Thing other) {

13 I/ return this.x == other.x;

14 /7%

15 }

17 public class EqualsOverload {

18= public static veoid main(String[] args) {

19 List<Thing> myThings = Arrays.aslist(new Thing(42));

20 System.out.println(myThings.contains(new Thing(42)));

]
F

}

]
]
—

Software Engineering

Implementing the HashCode() Function

* If a class overrides equals, it
must override hashCode

* When they are both

overridden, equals and
hashCode must use the same

The hashCode method

defined by class Object
usually returns distinct
integers for distinct

- objects.
set of fields
+ If two objects are equal, then Typically implemented by
their hashCode values must be converting the internal
equal as well address of the object into
« If the object is immutable, an integer. (JVM
then hashCode is a candidate dependent)

for caching and lazy initialization

http://www.javamex.com/tutorials/collections/hash _function guidelines.shtml

The ecqual s and hashCode Story

Equal objects must produce the same hash code
as long as they are equal, however unequal objects
need not produce distinct hash codes. ?

Wi have the same hash codel

14

© Manish Hatwalne

Software Engineering

| Calculating hashCode()

m Include a prime number.

m Involve significant variables of your object including
those used in the equals operation.

]

]
]
]

O

byte, char, short or int, then var_code = (int)var;

long, then var_code = (int)(var (var >>> 32));

float, then var_code = Float.floatTolntBits(var);

double, then long bits = Double.doubleToLongBits(var);
var_code = (int)(bits " (bits >>> 32));

boolean, then var code =var ? 1 : 0;

o object reference var code = (null==var ? 0 :

var.hashCode());

‘ Calculating hashCode() ...

Combine this individual variable hash code var code in
the original hash code hash as follows -
hash = 31 * hash + var_code;

Follow these steps for all the significant variables and
in the end return the resulting integer hash.

Check that the hashCode() method:
1. Returns equal hashcodes for equal objects.

. Hash codes returned for the object are consistently
the same for multiple invocations during the same
execution.

16

Software Engineering

r

1= import java.awt.Point;

2 import java.util.HashSet;
3

4 class MyPoint{

5 int x;
[} int vy;
7e MyPoint(int x, int y){
8 this.x = x;
9 this.y = vy;
}

-
@

12 public class HashExample {

13& public static void main(String[] args){

14 HashExample.Examplel();

15 HashExample.Example2();

16 }

17

18= static void Examplel(){

19 Point pl = new Point(1, 2);

20 Point p2 = new Point(1, 2);

21 HashSet<Point> coll = new HashSet<Point>();
22 coll.add(pl);

23 System.out.println(coll.contains(p2));

24 }

25 static void Example2(){

26 MyPoint pl = new MyPoint(1, 2);

27 MyPoint p2 = new MyPoint(1, 2);

28 HashSet<MyPoint> coll = new HashSet<MyPoint>();
29 coll.add(pl);

30 System.out.println(coll.contains(p2));

31 }

32 }

What is the output?

@ True

O False

What is the output?
O True
@® False

17

Override hashCode()

public class Point {

private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

public int getX() {
return x;

public int getY() {
return y;

In java we must modify
equals and hashCode
together!

@override public boolean equals(Object other) {

boolean result = false;
if (other instanceof Point) {
Point that = (Point) other;

result = (this.getX() == that.getX() && this.getY() == that.getY());

return result;

@override public int hashCode() {

return (41 * (41 + getX()) + gety());

Uses a prime number to
get a good distribution at
low runtime cost.

Software Engineering

Defining equals in terms of Mutable Fields

public class Point {

private final int x;
private final int y;

public Point(int x, int y) {

this.x = x;
this.y = y;

What if we hadn’t defined
equals in terms of immutable
(final) fields?

What might happen if an object was
placed into a hash bucket and then
its values were changed???

Mistakes like this create ‘hard to fix’ bugs!! Try to avoid them by
following good practices.

‘ toString()

m Returns a string representation of the object that "textually
represents” the object.

m The result should be a concise but informative
representation that is easy for a person to read.

class Vec {
Vec() { }
Vec(double xx, double yy) {
X = XX;
y=yy.

double x, y;

}

= return "X: " + Double.toString(x) + ", Y: " + Double.toString(y);

20

10

