
Software Engineering

1

CSC40232: SOFTWARE ENGINEERING

Professor: Jane Cleland‐Huang
Canonical Form
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

Canonical Form
 Canonical form is a practice that conforms to

established principles.

 When creating a class for general-purpose use,
you must include definitions for
 No argument constructor

 Object Equality

 String representation

 Cloning

 Serialization

 Hashing

These items take
additional work, but
the reward is robust,
maintainable and
reusable code.

Software Engineering

2

Default Behavior
Every Java object
inherits a set of
base methods from
java.lang.Object
that every client can
use.

Each method has a
sensible default
behavior that can
be overridden in the
subclasses (except
for final methods,
marked above with
F).

No Argument Constructor
Java only provides us with
the default (no-arg)
constructor when we do
not define any constructor
for that class on our own.

Java adds the no
arg constructor
behind the scenes.

Remember that Canonical form is for
purpose of general reuse. It makes your
class more flexible – especially if you
also provide methods to set any
parameters.

Software Engineering

3

5

Object Equality
The Java super class java.lang.Object defines
public boolean equals(Object obj)
Checks if some other object passed to it as an argument is
equal to the object on which this method is invoked.

x == y (Identity)
tests whether x and y are two
references to the same object.

x.equals(y)
tests whether x and y reference two
objects with “equal” contents.

Default implementation in
object class simply tests for
identify.

Each class should define
what it means by equals.

6

Put another way:
 == returns true, if the variable reference points to the

same object in memory. This is called “shallow
comparison”.

 The equals() method calls the user implemented
equals() method, which compares the object
attribute values. The equals() method provides
“deep comparison” by checking if two objects are
logically equal.

 If equals() method is not overriden, the default is used
and object.equals() works just like the "==" operator.

Software Engineering

4

7

What is the output?
True

False

Explanation:

• equals is overridden.

• Because the argument
passed to equals is of
type Foo, the equals
function on line 20 gets
called – and the value
“false” is returned.

Test.java

Does the answer change if
line 5 reads:
Foo foo2 = new Foo(1); ??

Javadocs Equal()
 Reflexive

An object must always be equal to itself; i.e., a.equals(a)

 Symmetric
If two objects are equal, then they should be equal in
both directions; i.e., if a.equals(b), then b.equals(a)

 Transitive
If an object is equal to two others, then they must both
be equal; i.e., if a.equals(b) and b.equals(c), then
a.equals(c)

 Non-null
An object can never be equal to null; i.e., a.equals(null)
is always false

Software Engineering

5

The Equals Method should Compare
 If the argument is this;

 return true (reflexivity)

 If the argument is null
 return false (non-null)

 If the argument is of a
different type
 return false (symmetry)

public class Point {

private static double version = 1.0;

private transient double distance;

private int x, y;

public boolean equals(Object other) {

if (other == this) return true;

if (other == null) return false;

if (getClass() != other.getClass())

return false;

Point point = (Point)other;

return (x == point.x && y == point.y);
}

}

https://www.youtube.c
om/watch?v=7V3589
CReug

Another Example

Software Engineering

6

Now look at this code

What is the output?

True

False

Let’s override the
equals method instead!

More Code

What is the output?

True

False

Software Engineering

7

13

Implementing the HashCode() Function

• If a class overrides equals, it
must override hashCode

• When they are both
overridden, equals and
hashCode must use the same
set of fields

• If two objects are equal, then
their hashCode values must be
equal as well

• If the object is immutable,
then hashCode is a candidate
for caching and lazy initialization

http://www.javamex.com/tutorials/collections/hash_function_guidelines.shtml

The hashCode method
defined by class Object
usually returns distinct
integers for distinct
objects.

Typically implemented by
converting the internal
address of the object into
an integer. (JVM
dependent)

14

Software Engineering

8

15

Calculating hashCode()
 Include a prime number.

 Involve significant variables of your object including
those used in the equals operation.
 byte, char, short or int, then var_code = (int)var;

 long, then var_code = (int)(var ^ (var >>> 32));

 float, then var_code = Float.floatToIntBits(var);

 double, then long bits = Double.doubleToLongBits(var);
var_code = (int)(bits ^ (bits >>> 32));

 boolean, then var_code = var ? 1 : 0;

 object reference var_code = (null == var ? 0 :
var.hashCode());

16

Calculating hashCode() …
 Combine this individual variable hash code var_code in

the original hash code hash as follows -
hash = 31 * hash + var_code;

 Follow these steps for all the significant variables and
in the end return the resulting integer hash.

 Check that the hashCode() method:

1. Returns equal hashcodes for equal objects.

2. Hash codes returned for the object are consistently
the same for multiple invocations during the same
execution.

Software Engineering

9

17

What is the output?

True

False

What is the output?

True

False

18

Override hashCode()

In java we must modify
equals and hashCode
together!

Uses a prime number to
get a good distribution at
low runtime cost.

Software Engineering

10

19

Defining equals in terms of Mutable Fields

What if we hadn’t defined
equals in terms of immutable
(final) fields?

What might happen if an object was
placed into a hash bucket and then
its values were changed???

Mistakes like this create ‘hard to fix’ bugs!! Try to avoid them by
following good practices.

20

toString()
 Returns a string representation of the object that "textually

represents" the object.
 The result should be a concise but informative

representation that is easy for a person to read.

 return "X: " + Double.toString(x) + ", Y: " + Double.toString(y);

class Vec {
Vec() { }
Vec(double xx, double yy) {

x = xx;
y = yy;

}
double x, y;

}

