
Software Engineering

1

CSC40232: SOFTWARE ENGINEERING

Professor: Jane Cleland‐Huang
Metrics
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

Effective Modular Design
Modular design

Reduces complexity
Facilitates change
Results in easier implementation by supporting parallel
development of different parts of the system.

Functional independence is achieved by developing
modules with:

Single minded function
An aversion to excessive interaction with other modules.

Independent modules are easier to maintain and test
Secondary effects caused by design/code modification are limited
Error propagation is reduced
Re-use is increased

Software Engineering

2

Two qualitative criteria
Cohesion
A measure of the relative functional strength of a module

High Cohesion (good)

Coupling
A measure of the relative interdependence among modules.

High coupling (bad)

Func A-1

Func A-2

Func A-3

Func B-1

Func B-2

Func B-3

Software Engineering

3

Metrics
SOURCE METRIC OBJECT-ORIENTED

CONSTRUCT

Traditional Cyclomatic complexity
(CC)

Method Traditional

Traditional Lines of Code (LOC) Method

Traditional Comment percentage (CP) Method

Object-Oriented Weighted methods per class
(WMC)

Class/Method Architecture

Object-Oriented Response for a class (RFC) Class/Message

Object-Oriented Lack of cohesion of
methods (LCOM)

Class/Cohesion

Object-Oriented Coupling between objects
(CBO)

Coupling

Object-Oriented Depth of inheritance tree
(DIT)

Inheritance Tree
structure

Object-Oriented Number of children (NOC) Inheritance

Evaluates the complexity of an algorithm in a method.
Calculate the cyclomatic complexity. How? (See notes on whitebox testing).
A method with a low cyclomatic complexity is generally better. This may
imply decreased testing and increased understandability or that decisions are
deferred through message passing, not that the method is not complex

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

CC =
edges – nodes + 2

Cyclomatic Complexity (CC)

Software Engineering

4

Counts the methods implemented within a class or the sum of the
complexities of the methods (method complexity is measured by cyclomatic
complexity).
Classes with large numbers of methods are likely to be more application
specific, limiting the possibility of reuse

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Weighted
Methods per
Class (WMC)

Store Departments

Manager
No_Employees
Floor_Space

Display
Credit
Exchange

Clothing_dept

Customer Gender
SizeRange
Specialty

ReStock

Appliance_dept

Category
Delivery_Install
Service
PartsOrdering
CallTechnicalSupport

WMC for Clothing_dept = 1
WMC for Appliance_dept = 4

Methods per class

High number of methods may have greater impact on children through inheritance
May also indicate application specific, decreasing reusability.

www.software.org/metrics99/rosenberg.ppt

Software Engineering

5

Weighted methods per class

Candidates for revision
and inspection.

Complexity of a method ==> Ideal 1-5, but 10 is acceptable
Number of methods in a class ==> 1- 20
WMC ==> < 100 (5 complexity * 20 methods) ; should not exceed 200 (10 * 20)

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Method Complexity (NASA data)

Method Complexities
By Subsystem

0

20

40

60

80

100

120

140

160

180

200

220

E
xt

en
d

ed
 C

yc
lo

m
at

ic
 C

om
p

le
xi

ty

sub_1 sub_2 sub_3 sub_4 sub_5 sub_6 sub_7 sub_8

www.software.org/metrics99/rosenberg.ppt

Software Engineering

6

Complexity vs. Size (NASA)

Complexity versus Size

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000

Executable Statements

Ex
t.
Cy
cl.
Co
m
pl
exi
ty

S2

S1

S4

S3

S8

S7

S5 S6

www.software.org/metrics99/rosenberg.ppt

Size to Complexity (RISK components)

4

3 2

1

0

6

5

0

20

40

60

80

100

0 50 100 150 200 250

Executable Statements

E
x

te
n

d
e

d
 C

yc
lo

m
a

ti
c

 C
o

m
p

le
x

it
y

www.software.org/metrics99/rosenberg.ppt

Software Engineering

7

Complexity vs. Size (NASA)

Complexity versus Size

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000

Executable Statements

Ex
t.
Cy
cl.
Co
m
pl
exi
ty

S2

S1

S4

S3

S8

S7

S5 S6

www.software.org/metrics99/rosenberg.ppt

The RFC is the count of the set of all methods that can be
invoked in response to a message to an object of the class
or by some method in the class.

Includes all methods accessible within the class hierarchy.

Looks at the combination of the complexity of a class through the
number of methods and the amount of communication with other
classes.

The more methods that can be invoked from a class through
messages, the greater the complexity of the class.

Increases complexity of testing and debugging as it requires a
greater level of understanding on the part of the tester.

A worst case value for possible responses will assist in the
appropriate allocation of testing time.

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Response for a Class (RFC)

Software Engineering

8

Response for a Class (RFC)

Response for Class

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0-50 51-150 151-250 251-350 351-450

RFC

N
u

m
b

er
 o

f
C

la
ss

es

Response for a Class < 50 , acceptable up to 100.
> 100 ==> greater complexity and decreased understandability, changes become very
difficult due to the potential for a ripple effect.

www.software.org/metrics99/rosenberg.ppt

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Response for a Class (RFC)

Classes near the ‘possible’ line
are classes that do not invoke
many outside methods.

Prime candidates for
walkthrough and inspections

Software Engineering

9

Count of the number of other classes to which a class is
coupled.

Count the number of distinct non-inheritance related class
hierarchies on which a class depends.

Excessive coupling is detrimental to modular design and
prevents reuse.

High COB:
Prevents reuse.
Increases sensitivity to changes in other parts of the design.
Therefore maintenance becomes harder.
Understandability decreases.

Design classes with weak coupling.

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Coupling between Object Classes (COB)

Coupling between Object Classes (COB)

www.software.org/metrics99/rosenberg.ppt

Coupling between Objects

-

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 > 40

CBO

N
u

m
b

e
r

o
f

C
la

s
s

e
s

Coupling between Objects > 5

Higher CBO indicates classes that my be difficult to understand
Decreased reuse and increased maintenance.

Software Engineering

10

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Coupling between Object Classes (COB)

Candidates for revision
and inspection.

The depth of a class within the inheritance hierarchy is the
maximum number of steps from the class node to the root
of the tree and is measured by the number of ancestor
classes.

The deeper a class is within the hierarchy, the greater the
number methods it is likely to inherit making it more
complex to predict its behavior.

Deeper trees constitute greater design complexity, since
more methods and classes are involved, but the greater the
potential for reuse of inherited methods.

A support metric for DIT is the number of methods
inherited (NMI)

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Depth of Inheritance Tree (DIT)

Software Engineering

11

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Depth of Inheritance Tree (DIT)

The number of children is the number of immediate
subclasses subordinate to a class in the hierarchy.

It is an indicator of the potential influence a class can have
on the design and on the system.

The greater the number of children, the greater the
likelihood of improper abstraction of the parent and may be
a case of misuse of subclassing.

But the greater the number of children, the greater the
reuse since inheritance is a form of reuse.

If a class has a large number of children, it may require
more testing of the methods of that class, thus increase the
testing time.

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Number of Children (NOC)

Software Engineering

12

Number of Children

Number of Child Classes

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4 5 6-10 11-20 20+

No. of Children

%
 o

f
C

la
ss

es

http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html

Plot DIT versus NOC

Higher DIT’s indicate a trade-off between increased
complexity and increased reuse.
Higher NOC’s also indicate reuse, but may require more
testing.

Interesting
class

Software Engineering

13

“It Takes a Village”
Any class that meets at least two of the
following criteria is flagged:

Response for Class > 100

Coupling between Objects > 5

Response for Class > 5 time the number of methods
in the class

Weighted Methods per Class > 100

Number of Methods > 40

WMC

RFC

CBO

NM

www.software.org/metrics99/rosenberg.ppt

Project Analysis

www.software.org/metrics99/rosenberg.ppt

ClassName #Method CBO RFC WMC
Class1 54 8 536 176
Class2 7 6 168 71
Class3 33 4 240 105
Class4 40 1 206 97
Class5 24 2 163 83
Class6 28 3 183 79
Class7 54 8 361 117
Class8 62 6 378 163
Class9 25 5 209 75
Class10 63 7 235 156
Class11 81 10 285 161
Class12 42 5 127 69
Class13 13 3 120 25
Class14 20 17 324 139
Class15 23 7 164 80
Class16 26 7 165 79
Class17 21 2 126 70
Class18 46 5 186 238
Class19 2 2 26 103

High Risk Classes Use this information to
focus testing effort and
to pinpoint possible
areas for refactoring.

