
Software Engineering

1

CSC40232: SOFTWARE ENGINEERING

Guest Lecturer: Jin Guo
SOLID Principles
sarec.nd.edu/courses/SE2017

Department of
Computer Science and
Engineering

http://www.kirkk.com/modularity/2009/12/solid-principles-of-class-design/
http://blog.gauffin.org/2012/05/11/solid-principles-with-real-world-examples/
http://code.tutsplus.com/series/the-solid-principles--cms-634

Software Engineering

2

3

The SOLID Principles
 Single Responsibility Principle

 Open Closed Principle

 Liskov Substitution Principle

 Interface Segregation Principle

 Dependency Inversion Principle

4

Software Engineering

3

5

Single Responsibility
A class should have only one reason to change.

What about this
class?

6

Single Responsibility
Separate out the responsibilities…

Software Engineering

4

7

Single Responsibility

https://www.youtube.com/watch?v=nyxaChZ1row&list=PL4CE9F710017EA77A&index=1

8

Open Closed Principle
If you modify a
class you may
break the
API/Contract such
that classes that
depend on it may
fail.

It is better to reuse
the class to add
new features
through inheritance
or aggregration.

This way the base
class is untouched.

Software Engineering

5

9

Open Closed Principle

10

Step 1. Create an interface

Step 2. Get the
correct concrete
handler and delegate
the processing to it.

Open Closed Principle

Software Engineering

6

11

Open Closed Principle
Software entities (classes, modules, functions, etc.) should be
open for extension, but closed for modification.

Violates OCP
because user is
tied directly to
Logic class.

Open Closed Principle

12

Open Closed Principle
The most common solution..

Open Closed Principle

Software Engineering

7

13

Single Responsibility

https://www.youtube.com/watch?v=EpvfSQEJq68&list=PL4CE9F710017EA77A&index=2

14

Liskov Substitution Principle

Software Engineering

8

15

Liskov Substitution Principle

 Should inheritance be used
between the square and
rectangle classes?

 Every square ‘is-a’
rectangle.

 Good opportunities for re-
use.

(int w, int h)

However there are
serious problems in the
design because the
square inherits
unwanted methods such
as setSize(int w, int h).

Software Engineering

9

17

Patching the problem
 We can easily override the unwanted behavior:

Public void setSize(int w, int h) {
width = h;
height = h;

}

 Unfortunately the code now behaves in an unexpected way:
public void stretch(Rectangle r, int dx, Graphics g){

r.erase(g);
r.setSize(r.getWidth()+dx, r.getHeight());
r.draw(g);

}
which is NOT an elegant solution. Code should behave in
ways expected by the programmer.

18

Design principle of
LEAST ASTONISHMENT.

 A designer of a class or interface MUST specify
the semantics of each method.

 All subclasses must conform to this expected
behavior.

Software Engineering

10

19

Liskov Substitution Principle

 Inheritance should ensure that any property
proved about super-type objects also holds for
subtype objects.

 Let q(x) be a property provable about objects x of
type T.

 Then q(y) should be true for objects y of type S
where S is a subtype of T.

20

Liskov Substitution Principle
 Preconditions cannot be strengthened in a subclass

- you cannot have a subclass that has stronger
preconditions than its superclass.

 Postconditions cannot be weakened in a subclass -
you cannot have a subclass that has weaker
postconditions than its superclass.

 No new exceptions should be thrown by methods
of the subclass, except where those exceptions are
themselves subtypes of exceptions thrown by the
methods of the superclass.

Software Engineering

11

21

Liskov Substitution Principle

 Subtype methods should ‘look like’ corresponding
supertype method

 Subtype methods should extend behavior of supertype
method in a consistent manner

 Subtype methods should not change or eliminate
supertype method properties

Adhering to this principle yields well-behaved
subclasses that support parametric polymorphism

A possible solution

 Gets around the problem of square and rectangle’s
behavior not matching (i.e. public methods of Rectangle
were not all appropriate for square), by creating a more
sophisticated hierarchy.

Software Engineering

12

Another possible solution

24

Single Responsibility

https://www.youtube.com/watch?v=LkqWvVXNDKw&index=3&list=PL4CE9F710017EA77A

Software Engineering

13

25

Interface Segregation Principle
There is nothing
that says that
there should be
a one-to-one
mapping
between classes
and interfaces.
It’s in fact much
better if you can
create several
smaller
interfaces
instead

26

Interface Segregation Principle
• Any interface we define

should be cohesive.

• There must be some kind of
interface which a client can
rely on. Its purpose is to
communicate to the client
code how the module
should be used.

• So what should go into the
interface? In this example
we expose all functionalities
that we’d like to offer.

Software Engineering

14

27

Interface Segregation Principle
We could break
the interface into
pieces
specialized to
each
implementation.

Various cars can
incorporate
(aggregate)
different objects.

The car uses the implementations but depends
on the interfaces.

Interface Segregation Principle

A subtle difference

Software Engineering

15

29

Single Responsibility

https://www.youtube.com/watch?v=dmKvJyihsAQ&index=4&list=PL4CE9F710017EA77A

30

Dependency Inversion Principle
Let the caller
create the
dependencies
instead of letting
the class itself
create the
dependencies.
Hence inverting
the dependency
control (from
letting the class
control them to
letting the caller
control them).

Software Engineering

16

31

Dependency Inversion Principle
• High-level modules

should not depend on
low-level modules. Both
should depend on
abstractions.

• Abstractions should not
depend upon details.
Details should depend
upon abstractions.

KeyboardReader PrinterWriter

Higher level classes
e.g. Copy class

KeyboardReader PrinterWriter

Higher level classes
e.g. Copy class

iWriteriReader

32

What about this?
class Worker {

public void work() {
//working

}
}

class Manager {
Worker worker;
public void setWorker(Worker w) {

worker = w;
}
public void manage() {

worker.work();
}

}

class SuperWorker {
public void work() {

//.... working much more
}

}

Software Engineering

17

33

Fixed to comply with DIP

34

Single Responsibility

https://www.youtube.com/watch?v=d4uBBvnreXw&list=PL4CE9F710017EA77A&index=5

Deferring this
discussion
until next
week.

Software Engineering

18

What goes together?

35

Single Responsibility

Open/Closed

Liskov Substitution

Interface Segregation

Dependency Inversion

Only does what it needs to do

Highly cohesive classes

Easy to maintain and evolve

No surprises in Subtyping and Inheritance

Everyone should depend on abstractions

