
Finding Causes of Program Output with the Java Whyline
Andrew Ko

The Information School, DUB Group
University of Washington

Seattle, WA 98195
ajko@u.washington.edu

Brad A. Myers
HCI Institute, School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

bam@cs.cmu.edu

ABSTRACT
Debugging and diagnostic tools are some of the most
important software development tools, but most expect
developers choose the right code to inspect. Unfortunately,
this rarely occurs. A new tool called the Whyline is
described which avoids such speculation by allowing
developers to select questions about a program’s output.
The tool then helps developers work backwards from output
to its causes. The prototype, which supports Java programs,
was evaluated in an experiment in which participants
investigated two real bug reports from an open source
project using either the Whyline or a breakpoint debugger.
Whyline users were successful about three times as often
and about twice as fast compared to the control group, and
were extremely positive about the tool’s ability to simplify
diagnostic tasks in software development work.

AUTHOR KEYWORDS
Debugging, Whyline, slicing, instrumentation.

ACM Classification Keywords
D.2.5 [Testing and Debugging]: Debugging aids, tracing; H.
5.2 [User Interfaces]: User centered design.

INTRODUCTION
In 2002, the National Institute of Standards and Technology
estimated that testing and debugging account for 30-90% of
software development costs, further finding that the average
error takes 17.4 hours to find and fix [19]. According to the
respondents in the study, the problem is the lack of effective
tools. In effect, millions of developers work to improve the
world’s software infrastructure using little more than
breakpoints and print statements.

A new approach to debugging tools, called the Whyline [8],
has the potential help dramatically: by allowing developers
to ask questions about program output, in one study it
reduced debugging time by a factor of 8. It achieved this
through a simple insight. Given a failure, there must be
some observable symptom of failure, such as a suspicious

value or a lack of feedback. When a developer sees such a
symptom, they must guess about its cause and then test
their hypothesis using tools, perhaps setting a breakpoint or
writing a print statement. Unfortunately, developers usually
guess incorrectly, spending considerable time exploring
unrelated code before eventually finding the cause [9]. By
supporting questions about output instead of code, the
Whyline not only avoids speculation about the causes of a
failure, but also simplifies the exploration of code
responsible for the output.

Unfortunately, the original Whyline [8], designed for Alice
(www.alice.org), did not scale to the types of programs
developed by professional developers. It supported a
limited set programming language features, ignored
functions, included a global question menu that quickly
grew in size, and presented answers that were highly
tailored to Alice animation primitives. To support complex
modern languages such as Java, the Whyline user interface
had to be reinvented.

In this paper, we contribute a new Whyline user interface,
designed to support Java programs of widely varying
complexity, while preserving the benefits of the original.
The Java Whyline allows developers to select “why did”
and “why didn’t” questions that are extracted from the
program and a recording of its execution (Figure 1). The
tool then answers the question using automated program
analyses, helping the developer explore the causal
relationships between the output and the program’s
execution. We have described the data structures,
algorithms, and technical scope of our prototype in a prior

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04…$5.00.

1

3

Figure 1. After the recording loads, the developer can choose a
time in the history as if it were a digital movie (1), then click

the desired output (2) to see questions (3).

2

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1569

publication [13]. In this paper we focus on the interaction
design of the Whyline’s user interfaces. For example, we
contribute:

• Direct manipulation queries about program output
ranging from graphical primitives to the program
abstractions they represent.

• An interactive timeline visualization that serves as (1)
an answer to questions, (2) an interface for followup
questions, (3) a navigational aid, and (4) and an
information gathering bookmarking tool.

• A familiarity heuristic for filtering and ranking
questions and annotating views throughout the UI.

In addition to these contributions, we also provide empirical
evidence that the Java Whyline helps developers avoid
speculation and explore more relevant code. Our results
show that Whyline users were successful about three times
as often, were about twice as fast compared to the control
group, and were extremely positive about the tool’s ability
to simplify diagnostic tasks in software development work.

In the rest of this paper, we discuss related work on
debugging and diagnostic tools, provide an example of the
Java Whyline in use, and discuss the design and design
rationale of the Java Whyline user interface. We end with
our experimental results.

RELATED WORK
Debugging as a human activity has been studied for
decades. There is considerable evidence that debugging is
hypothesis-driven [7]. Descriptions of how developers test
their hypotheses vary, but generally show that successful
developers are more systematic and objective [17]. Studies
have also considered the types of questions that developers
ask to test their hypotheses. Weiser showed that developers
trace backwards to understand “slices” of program behavior
[21]. Sillito extended this finding [18], showing that
developers seek “focus points,” or places in code related to
the developer’s goal. A similar study framed program
understanding as “fact finding” [14], driven by efforts to
discover properties of a program.

Research on debugging tools have taken a different
trajectory. Many help developers watch execution, by
setting breakpoints, or sampling events in program
execution [15]. Others still help developers analyze
causality in program execution, most notably slicing
approaches [2]. The common feature of these approaches is
that they require a developer to first speculate about what
code is related to a failure. Other approaches compare
events within [6] and between [22] program executions to
find anomalies or trends. These help avoid speculation, but
also severely limit the conditions in which the tools can
identify bugs.

There are also several question-asking tools in non-
programming domains. One major difference between these
and the Whyline is the type of dependencies that are used to
explain causality. The ACT-R framework [3] supports “why

not” questions about production rule systems, giving
answers in terms of rules that did not fire. Some AI systems
support “why not” questions about why some data was not
used in answering queries to a knowledge base [4]; here,
answers consist of domain-specific dependencies from an
ontology. Lieberman explored “why” questions about e-
commerce processes [20], with answers constructed from
business transactions. The Whyline concept has also
inspired projects looking at constraints in UI design [5],
spreadsheets [1], and application state in word processors
[16]. Each of these present answers in ways tailored to their
domain, but none have dealt with artifacts as complex as
large Java programs.

THE WHYLINE FOR JAVA
To describe the Whyline, let us begin with an example. A
prior study [10] involved a painting program, which
supported drawing colored strokes (see Figure 1a). Among
the 500 lines of code, there were a few bugs in the program
unintentionally inserted, which were left in for the study.
One problem was that the RGB sliders did not create the
right colors. In the study, users took a median of 10 minutes
to find the problem, mostly using text searches for “color”
to find relevant code.

With the Whyline, the process is simpler and faster (see
Figures 1 and 2). The user launches their program and
demonstrates the problem, in this case by drawing a stroke
with an unexpected color. After quitting the program, the
Whyline reads the recording from disk, opening a Whyline
window. The user then moves the time controller (a),
selecting the time that the problem occurred. Then, the user
clicks on anything related to the problem to see questions
(b). In this case, the click is on the stroke with the wrong
color, showing the question, “why did this line’s color =
■?”

After clicking, the Whyline shows a visualization
explaining the sequence of executions that caused the stroke
to have its color (Figure 2a,c). This visualization includes
assignments, method invocations, branches, and other
events that cause the behavior. When the user selects an
event, the corresponding source file is shown (d), along
with the call stack and locals at the time of the selected
execution event (e). In this case, the Whyline selects the
most recent event in the answer, which was the color object
used to paint the stroke (a). To find out where the color
came from, the user could find the source of the value by
selecting the question “why did color = rgb(0,0,0)” (b). This
causes the selection to go to the instantiation event (c) and
the corresponding instantiation code (d). Here, the user
notices that the green slider was used for the blue part of the
color; it should have used the blue slider.

Asking Questions
One difference between the Java Whyline and other tools
(including the Alice Whyline), is that it analyzes a
recording of a program rather than a live program. This was
a conscious choice: supporting live debugging and
recording incurs too much performance overhead, and

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1570

supporting the collaborative nature of
debugging [11] by producing
shareable recordings was deemed
more important.

The Whyline window represents all
the data in a Whyline recording.
Question asking mode only shows
program output and a time slider
(Figure 1), and not code, to help developers avoid
presuming that any particular code was responsible for a
failure. The answer mode, which shows a visualization,
source code and many other types of information (Figure
2), was designed to help developers juxtapose code and the
execution of code, as we shall discuss later.

The Alice Whyline only supported questions about
animations, because there were few other forms of output.
For Java, however, output is more complex. Therefore, we
chose to support primitives common to all Java programs,
namely graphical, textual, and exception output

(corresponding to the tabs in Figure
2’s top right) and base higher-level
questions on these primitives. When
mousing over output, the Whyline
highlights primitive outputs. For
example, Figure 1 shows a line
segment and Figure 3 shows a variable
value printed to a console. Clicking on

primitive output shows a menu of questions about attributes
of the primitive output (as in Figure 4).

Our studies show that most questions are about conceptual
entities perceived on-screen, rather than just lines and text.
Therefore, for graphical output, users can also ask questions
about why a field that affects output has its current value,
why such fields were not assigned a value, and also why a
method was not executed after a certain time (Figure 5). All
questions contain names extracted from code (e.g.,
PaintCanvas “canvas”). These were included to provide
cues about the relevance of the contents of each sub-menu.

c

d

a

e

Figure 2. After choosing a question, the Whyline provides an answer (a), which the developer navigates using a followup question
(b), revealing the color creation event (c). The code for this event (d) is the cause of the problem. Also shown are the call stack (e),

source (f), and navigation buttons (g).

b

f

g

Figure 3. Mousing over textual output. The
popup shows the question’s temporal context.

Figure 4. Questions about a rectangle’s
properties, derived from a drawRect() call.

Figure 5. Questions related to a line, containing objects that the line represents,
such as PencilPaint and data and methods that affect the line.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1571

These question types were all designed to be as close as
possible to visible entities on-screen. For text, users can ask
questions about why text was printed and why an exception
was thrown. There is also limited support for asking why
some text was not printed, by finding the desired text in a
global menu of all print statements in a program. The
algorithms for extracting questions from code are described
in [13].

In addition to selecting the subject of a question, users must
also select its temporal context. The Alice Whyline only
supported questions relative to the end of the program,
making it difficult to ask questions about earlier executions
of the same code. The Java Whyline removes this limitation
by providing a time slider (Figure 6) to allow the user to
explore the output history of the program (by simply
dragging or using the keyboard). Our study showed that
developers’ questions tend to be relative to a specific user
input event [10], therefore, each black dot in the time slider
represents an I/O event, such as a mouse click, keyboard
press, or window repaint. The icons at the top of the time
slider each represent a kind of I/O, allowing the user to
filter events (e.g., the right of Figure 6 shows a mouse event
filter selected, so that only mouse move events are shown).

The type of question determines how time is treated. For
“why did” questions, the user needs to select the time at
which the output in question is visible. “Why did” questions
then reason backwards about the cause of the output prior
to the time the output was rendered (as indicated by the
highlighting in Figure 6). Conversely, “why didn’t”
questions ask about why something did not occur or change
after a particular point in time. This differs from the Alice
Whyline [8], which required the user to pause the program
at the desired time. Also in Alice, “why didn’t” questions
reasoned about the whole execution history, rather than
being scoped after the paused time; this was only adequate
because Alice programs execute far less code.

Viewing Code
Several studies [12][16][17] have shown that reading code
and understanding its relationships is a crucial part of
program understanding. Therefore, rather than using a

conventional editor, we designed a custom code viewer for
the Whyline (with a standard syntax-colored, fixed-width
layout). Source files are broken down into interactive lines,
tokens, and syntactic structures for rendering onto the
screen. This enables the Whyline to highlight complex
token sequences, such as the header in Figure 7. Users can
also click on individual tokens, lines, methods and fields to
ask content-specific questions. For example, clicking on an
identifier shows questions about the variable’s current value
(based on the time slider position) as well as questions
about references to in the program. Clicking in the
whitespace of a method allows users to ask about its callers
and callees.

Also, for the selected event in an answer (e.g., Figure 2c),
the Whyline automatically arranges relevant source files,
rather than having the user manually open and arrange files.
For example, Figure 8 shows two files arranged by the
Whyline, with an arrow between two related elements in the
files, with the rest of the code faded. This optimizes the
readability and highlighting of relevant information about
the user’s selection. The file views also show followup
questions about the highlighted relationship (as discussed
next). The experience of navigating code is thus greatly
simplified, only requiring a developer to change a selection
in an answer to change the whole code view.

Figure 6. The two modes of the output history timeline. “Why did” questions (left) analyze the past; “why didn’t” questions (right)
analyze the future. On the right, the view is filtered to only show mouse move events (as the left-most icon is selected to indicate).

Figure 7. Precise highlighting in the Java Whyline source
viewer and crosshatching over an unfamiliar source file.

Figure 8. Automatic arrangement and dependency
highlighting of multiple files related to the selection.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1572

Viewing Answers
What makes reading code difficult in a debugging task is
that programs are written in a fixed and sequential way, but
they execute in a dynamic, non-sequential fashion. An
effective debugging tool needs views to expose both of
these perspectives. The Java Whyline’s timeline
visualization was designed to portray the dynamic
characteristics of program execution. The visualization uses
a notation that was designed not to be understood in
isolation, but alongside the code to which the
visualization’s events correspond. Execution events, the
small labeled boxes as in Figure 9, are organized temporally
along the x-axis and non-overlapping (since code does not
technically execute in parallel). The events are separated by
execution thread along the y-axis (as in Figure 9).

There are several types of events that appear in a Whyline
visualization, each distinguished by a color. The two most
important are control and data events, which are
fundamental to the operation of computer programs. Events
with green borders refer to control events, such as method
calls and branches (such as if statements and loops). Events
with blue borders refer to data events, such as assignments
to different types of Java variables. Orange represents
information about the event selected in the visualization
(orange also highlights the corresponding code in the source
files). Grey events are code that was not recorded by the
Whyline (Figure 10a) and events with cross hatching
(slanted vertical lines) refer to API calls (code for which
editable source is unavailable, also Figure 10a).

We designed the notations in the visualization to mimic
Java syntax. For example, in Figure 9, parentheses () are
used to group arguments passed to method calls (“static”
refers to a class initialization method, which has no
arguments). Curly braces {} group events that occurred
within a method call, as in Figure 9; these can be nested if

the visualization contains nested method calls (a call stack
depth greater than one). The elision ● ● ● in Figure 9
indicates hidden events. Clicking on these reveals the most
recent of the elided events.

There are a number of things that do not appear in the
visualization, with the rationale that any event that
corresponds to a single token in the source code was simple
enough to understand from the code alone. Therefore,
variable references are not included, but variable
assignments are. In general, expressions do not appear in
the visualization, but the values computed by expressions
do. This differs from the Alice Whyline, where all events
were included, since its average user was less experienced
at programming.

Exploring Answers
The Whyline’s answers are more than just static
visualizations. In addition to representing an answer to a
why question, they are also designed to be temporally
organized bookmarking tools. As the user navigates the
visualization, events are automatically added to the view,
allowing the user to accumulate a collection events and
code (unlike the Alice Whyline, where all events were
included by default). This not only allows users to easily
revisit important places in the source, but after some
exploration, it results in a concise collection of the events
that occurred in the program to cause a failure. Therefore, it
is an explanation, navigational aid and bookmarking tool
rolled into one.

There are many ways to navigate a Whyline answer, all
designed to facilitate developers’ mental simulation of a
program’s execution [7]. Users can change the event
selection by clicking on another event or using the left and
right arrow keys to go to previous and next events visible in
the visualization. The Whyline also supports common
breakpoint debugger commands (but in reverse as well).
For example, less-than < and greater-than > navigate to the
previous and next event in a method, much like the “step
over” command in a breakpoint debugger. The meta‐left
and meta‐right shortcuts navigate to the previous and next
event in the thread, like the “step into” command in a
debugger. All of these commands add the new event to the
visualization and select it; this immediate feedback is
intended to reinforce the relationship between the
visualization and the code.

Figure 9. Threads separated along the y-axis.

b a

c

d

Figure 10. An answer showing (a) a collapsed invocation, (b) a hidden call context, (c) several unexecuted instructions, and (d) a
conditional that evaluated in the wrong direction, preventing the desired instruction from executing.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1573

To support the “peeking” behaviors observed in a study of
code navigation [10], every action affecting the event
selection can be undone with backspace, giving users
confidence that they will be able to return to their previous
location if a navigation is not fruitful. These types of
interactions do not change the visualization in any way and
can be used to navigate between code and execution events
that one has already explored.

A fundamental feature of the Whyline’s answers is its
followup questions. Figures 2b and Figure 8 show followup
questions for an event that refers to a reference to a color
field. The first question, which is in green, asks why the
reference to the color field was executed; this is the control
dependency of the event. Choosing this shows the
conditional or method call that led to this reference (in the
figure, it was the call to paint(), as indicated by the green
arrow). The other two questions in Figure 8 refer to data
that was used to execute the reference to color, namely the
object of the field that was referred to and the value of the
field itself. These are the two data dependencies of the field
reference. By default, choosing these questions shows the
origin of the value mentioned. The origin is where the value
is computed, skipping over method calls that simply pass
the value unmodified. (Of course, one of these calls could
be in error, this default behavior is based on the heuristic
that most Java bugs occur in data dependencies, such as
computing or passing the wrong value, not calling the
wrong method). If the user desires to view the skipped calls,
they can hold shift to see direct data dependencies. All
followup questions appear in both the source and the
timeline (Figure 8).

For “why didn’t” answers, the Whyline also includes code
that was not executed (Figure 10c), but is needed for the
output in question to occur. When selected, the Whyline
shows the unexecuted code and draws arrows from the code
that would have caused the selection to execute. The
Whyline also includes events when the answer includes a
branch in the wrong direction. For example, in Figure 10d,
the Whyline shows that a statement was not executed
because the conditional evaluated to true instead of false.
As the user clicks on or uses the keyboard to navigate the
unexecuted code, the code view above the timeline us
automatically updated to show the corresponding code.

Using Familiarity for Filtering and Annotating
Asking questions about a particular primitive output (or
some concept related to it) dramatically reduces the amount
of information that must be analyzed by the Whyline and
the developer. However, we found it necessary to design
additional measures to keep question menus and answers a
reasonable size. Our most effective idea was to define a
familiarity measurement and use it to filter and annotate
information throughout the Whyline user interface.

The Whyline defines familiar code as any code that is
either declared or directly referenced in code declared by
the developer. For example, if the developer defines a new

kind of button class that extends the standard Swing button,
both the custom class and the Swing class become familiar.
The super class of the Swing button would not be familiar,
however. This measure of familiarity is used throughout the
Whyline UI. The Whyline excludes questions about code
that is related to the output selected, but unfamiliar. For
example, the second level menu of Figure 5 shows several
objects related to a line; technically, an object of type
ScrollPaneUI would also appear in this list, but since it is
unfamiliar, the item is excluded.

Familiarity is also used in answers. For example, unfamiliar
source files (Figure 7) and executions of unfamiliar code
(Figure 10a) are crosshatched, to help users focus on events
from code that they wrote or referenced. Also, when
showing any event in a visualization, the Whyline collapses
events that occurred in unfamiliar methods, effectively
“black boxing” API calls and other code for which the
developer has no source (Figure 10a). In addition, if events
from familiar code occur in methods that were called by
unfamiliar methods (for example, a user-defined call back
method called by an API), those events are shown, but the
surrounding calling context is not (Figure 10b). These
mechanisms reduce the number of events presented in
Whyline answers to those likely to be familiar.

THE WHYLINE VS. BREAKPOINT DEBUGGING
A central assumption underlying the Whyline’s design is
that asking about output first instead of code will prevent
developers from speculating about the causes of a program
failure, therefore saving them time in their investigations.
This was true for the Alice Whyline [8], but needed to be
tested for the Java version, because of its more
sophisticated UI, support for more complex programs, the
broadened scope of why questions supported. Therefore, we
designed an experiment to compare skilled Java developers
using the Whyline to those using conventional tools.

Study Design
The study used a between-subjects design to assess the
influence of debugging approach on completion time and
task success. The goal was to determine whether the
Whyline would increase success when compared to
conventional tools. To increase confidence that any
observed differences were due to the Whyline, the control
group used a version of a breakpoint debugger that was
built using the identical Java Whyline UI, but with different
debugging tools. This way, participants had identical user
interface experiences, except for debugging interfaces. The
control group could set breakpoints and step through code,
like any other debugger. The downside of ensuring this UI
equivalence across groups was that neither condition could
edit code (the prototype had no editor or compiler). To
make up for this, both groups could insert print statements
with no side effects. The Whyline group did not have access
to breakpoint features (since we did not focus on which
type of support developers would choose given both
options).

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1574

Participants
Both groups had 10 participants, all students in a masters
program in software engineering with median of 1.5 years
of industry software development experience (ranging from
0-10). (The one developer who reported zero experience
had interned on industry projects but did not count it). All
rated conventional breakpoint debuggers as “important” to
their work or higher on a 5-point scale of “useless” to
“essential.” The participants also rated themselves with
average or higher Java expertise on a 5-point scale of
“beginner” to “expert.” There were no significant
differences in these measures between conditions.

Tasks
We adapted two real bug reports from the ArgoUML project, a
150,000 line application for designing Java programs with
UML (http://argouml.tigris.org). We sought bugs that (1)
had checked-in solutions with which to compare
participants’ solutions, (2) that varied in complexity and
difficulty, and (3) that were representative of other bugs in
the project. The following bugs were chosen after some
initial piloting.

The first (Figure 11) involved removing a checkbox from
the UI. The strategy of searching for the label of the
checkbox in the code did not work because the application
used localized strings for different languages stored in a
compressed file on disk. The label did appear in the
command line help, which did appeared in code, so if one
searched with part of the checkbox label, one could make
the connection between the two and find the right file. Few
made this connection in the actual study.

The second bug (Figure 12) involved a drop down list of
class names that was supposed to contain all available
classes in the project, but was for some reason excluding
classes in different packages with identical names. The
problem was that the code responsible for aggregating these
class names collected the names in an ordered set of
unqualifed names. It therefore excluded the second class
with the same name. The challenge was to identify the class
that was aggregating these names and identify the ordered
set’s equivalence operator.

Success for each task was evaluated based on the solutions
committed to the ArgoUML code base. Task 1 had only one

valid fix with slight variations in how the layout code was
updated. Task two, however, had a larger space of solutions
(qualifying the name of the type entities used to construct
the list, making the set comparison more sophisticated,
among others). In our study, however, the task 2 change
recommendations were bimodal in their approach: they
were either blind guesses, or reasonably close to the fix
submitted for the task 2 bug in the actual ArgoUML project.

Procedure
After obtaining consent, participants completed a one page
survey about their programming experience. The
experimenter then guided the participant through a 10-
minute tutorial on features common to both conditions,
including the code navigation and call stack tools. The
experimenter then trained the participant on features
specific to the condition. The Whyline group learned how
to ask questions and navigate answers; the control group
learned how to set breakpoints, step through code, and
insert print statements. After completing the tutorial, the
experimenter read the first task description and provided a
copy to the participant to follow. All of these materials
appear in the appendix of [12].

For each task, participants were told to find the cause of the
problem and write a change recommendation to a fictional
boss. They were also told to emphasize speed over
correctness, since the code they were understanding was
unfamiliar and their boss would know if their
recommendation was on track (this was also to help unify
their productivity tradeoffs, so that their task completion
times would be more comparable). Participants were
allowed to ask for clarification about tutorial content, but
other questions were disallowed. Participants were given 30
min. to complete the task; at 10 and 5 min. remaining the
experimenter gave time remaining warnings.

Figure 12. ArgoUML bug 3128, titled “Problems with two classes
with the same name in different packages.” The name

“MyClass” only appears once instead of twice.
Figure 11. ArgoUML bug 3121, titled “Remove ‘Report Usage

Statistics’ since it does not do anything.”

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1575

Results
The speed and success results for task 1 are summarized in
Figure 13. All 10 Whyline participants completed task 1,
compared to only 3 control participants, a statistically
significant difference (χ2 =10.6, p<.05). Whyline
participants also completed task 1 twice as fast (t=4.5,
p<0.05). As seen in Table 1, this was usually achieved using
1 or 2 “why did” questions, almost exclusively about the
creation of the checkbox or the label drawn. The speed and
success for task 2 are shown in Figure 14. Whyline
participants were more successful (χ2=5, p<.05), with 4 of
10 Whyline users succeeding, compared to 0 in the control.
Whyline users asked a median of 4 “why did” questions
(see Table 1), usually starting on the “MyClass” label,
eventually asking about the creation of the list of objects
containing the labels (which was a few dependencies away
from the bug). Because the task was more difficult, both
groups experienced ceiling effects, causing no difference in
speed. There was no relationship between industry
experience and success for either task (though the sample
was probably too small to detect such differences).

It is also informative to consider the information that
participants explored. The tools were instrumented to
capture data about source file views and navigations with
both the keyboard and mouse, allowing us to see what lines
of code participants were viewing and for how long. Table
1, for example, lists statistics about the number of files
participants viewed per minute and overall, by task and
condition. For task 1, Whyline participants viewed
significantly fewer files per minute than the control group
(t=22.6, df=18, p<0.0001), but both groups viewed similar
numbers of files overall. For task 2, Whyline participants
viewed significantly more files per minute than the control
group (t=2.2, df=18,p<.05). This discrepancy is consistent
with the nature of the two tasks: task 1 involved changes to
a single file, so viewing fewer files should relate to success;
task 2 involved dependencies across many files, so viewing
more files should relate to success.

To assess the relevance of the files they viewed, we selected
a single function for each task that was key to solving each
problem and, for each function visited, computed the
distance from the visited function to the key function in the
application’s program dependence graph [2]. (For example,
if a method was a single call or variable reference away
from the key function, the distance of the method would be
1. The key function itself has a distance of 0). Using this
metric, we computed each participant’s median distance
from the key function for each task. For task 1, Whyline
participants were significantly closer to the key function
than the control group (t=4.6,df=18,p<.0002). For task 2,
there was no significant difference in distance (likely due to
the low degree of success).

Another telling difference in participants’ performance were
the UIs used to debug. As seen at the bottom of Table 1,
Whyline participants relied mostly on questions, avoiding
the more common strategy of text searches for relevant
content [9]. The control group, despite using breakpoints,
relied more on text searches (which is to be expected [9])
and were far less successful. No participants had usability
problems with the breakpoint features, likely due to our
extensive 3-month period of user testing prior to the study.

Finally, 8 of the 10 Whyline users offered their opinions on
the Whyline unprompted:

I love it!
This is really great!
I think this will really help.
This is really going to reduce the burden on programmers.
This is great, when can I get this for C?
It's so nice and straight and simple...
My god, this is so cool.
This is very nice.

The enthusiasm of participants was clearly evident and all
asked to be notified of the tool’s availability.

0
2
4
6
8

10
successful

 0

10

20

30
time (min)

whyline
control

Figure 13. For task 1, the number of successful participants
and the time on task.

0
2
4
6
8

10
successful

 0

10

20

30
time (min)

whyline
control

Figure 14. For task 2, the number of successful participants
and the time on task.

task 1 task 2
whyline control whyline control

of unique
source files
viewed per

minute

mean 1.8 13.3 1 0.6

σ2 1.4 0.8 0.5 0.4

range of files viewed 8 – 39 10 – 66 16 – 72 6 – 44
median

distance to key
function

mean 2.2 3.4 3.6 3.3

σ2 0.6 0.5 0.5 0.5

why did questions
(median, range)

2, 1–4 — 4, 1–8 —

why didnʼt questions
(median, range)

0, 0–0 — 0, 0–2 —

median # debugger steps
taken

— 9 — 14.5

median # text searches 0.5 7 1 8

Table 1. Statistics about each condition per task, including
files visited per minute and overall, the median distance to the

solution, and the tools used to debug.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1576

LIMITATIONS
Our study design had several limitations. Our sample was
small and may not be representative of Java users, as many
stated their primary expertise was in other languages. The
debugger used in our control condition imposed limitations
on participants’ ability to control the live program and both
conditions were disallowed from editing the program.
While changing the program and the runtime can be
counterproductive in debugging, it is a common strategy [9]
and may have led to artificial differences in success.
Furthermore, none of the participants were familiar with the
ArgoUML source; caution should be exercised in applying our
results to situations in which a developer is more closely
familiar with the code being debugged.

DISCUSSION
The study revealed several important usage patterns for the
Whyline UI that inform not only the design of debugging
tools, but also the nature of debugging as an activity. For
example, although there was a split in how people used the
visualization, some to guide their search and others as a
bookmarking tool, the central benefit of the visualization
seemed to be as a place to gather relevant code. All
Whyline users relied on the events in the visualization as a
way to get back to recently viewed and relevant code and
many complained that there was no way to remove events
from the visualization once they had been added. This
suggests that they intended to use the visualization’s
bookmarking and history features to capture a summary of
their discoveries about the problem they were investigating.

Whyline participants tended not to ask “why didn’t”
questions and when they did, they tended to get frustrated at
the extra time it took to answer some “why didn’t”
questions (this was because the analyses involved
exhaustive searches through potentially large and complex
call graphs and were on the order of a minute or less for the
tasks in this study). This problem is inherent to the static
analyses required to generate these answers. It is not clear
whether participants would have asked more “why didn’t”
questions if they had been faster to produce. It is also
unclear whether participants avoided “why didn’t”
questions, were not as aware of their presence, or just did
not need them for the experiment tasks. This also raises the
issue of whether participants were even able to find the
questions they wanted to ask. We are investigating this as
part of the Java Whyline deployment, by allowing users to
send feedback about questions they want to ask but cannot
find. Informally, it seems that participants were satisfied as
long as they found a question that was close enough to the
one in their mind, with participants generally starting with
questions about surface-level output, and converging on a
data structure related to the problematic symptom.

Another interesting trend was that participants treated
Whyline answers like they treat the results of a web search:
if they saw nothing in the first few events of an answer,
they would try asking a different but related question.
Similarly, there seemed to be a reluctance to follow data

dependencies perhaps because other tools they were
familiar with only allow one to navigate control
dependencies (i.e., a call stack); this result, seen early in
pilot studies, motivated several changes to the visual
presentation and phrasing of followup questions. In general,
effective navigation of data dependencies likely depends on
developers having some notion of what a data dependency
is.

There was variation in the specificity of questions that the
Whyline participants used, suggesting that users still need
to use caution in which questions they explore. Some chose
questions directly relevant to the failure, and as a result,
obtained relevant answers. Others chose more generic
questions only tangentially related to the failure. They still
tended to find the answers, but only with more work. One
challenge with choosing the right questions is that users
may not find what they are looking for in the question
menus. For example, because the questions and even the
phrasing of the questions are derived from the program, the
degree to which the questions match users’ perception of
program output depend greatly on the degree to which the
program matches these perceptions. This is an inherent
limitation of the Whyline approach.

The choice of exposing the concept of “dependencies” in
the UI seemed to influence participants’ confidence in their
understanding of causality in the program. Whyline
participants seemed to require less time to decide that they
had found a buggy method and were generally right when
they had decided so. Control group participants often read a
method and after some time understanding related code,
deemed it “unimportant” by never returning to it, even
when it was precisely the method that contained the bug.

One potential downside of the UI’s focus on dependencies
is that users may not find important or relevant code
serendipitously. Whyline users may be so focused on a
particular subset of a system that they lose this coincidental
knowledge. Future work should investigate whether such
knowledge is obtained in debugging tasks and whether such
knowledge later becomes important.

The study also revealed that the Whyline UI could help
users localize bugs, but often failed to help users
understand the exact nature of the bug. For example, task 1
was a relatively obvious fix once found, whereas task 2’s
cause, if found still took considerable time for participants
to understand. This suggests that the Whyline is helpful at
“finding the buggy method” but not for explaining “why the
method is buggy.” This is likely because the Whyline only
provides causal explanations of output. It has no special
knowledge of the program’s intended behavior.

The issue of diagnostic skills is also an interesting area of
research to consider. For instance, the Whyline might be a
useful way to teach diagnostic strategies, such as that of
working backwards from program output and exploring
data dependencies. In fact, many of the participants in our
study, after getting Whyline answers about things that they
thought did not happen, but actually did, commented to

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1577

themselves about needed to be more cautious about
assumptions. Participants would also mouse over questions
about particular data and say, “Is this the data I really want
to ask about?” These anecdotes suggests that it may be
possible to train developers to be more objective and
careful about their debugging efforts by using the tool.

CONCLUSIONS
We have described a novel user interface that allows
developers to ask “why did” and “why didn’t” questions
about program output and explore answers with a combined
timeline visualization, bookmarking tool and navigational
aid. We have shown that the UI helps developers avoid
costly speculation about the causes of failures and that this
translates into increased success and productivity. While a
number of challenges remain in adapting the Whyline
approach to other languages, software development
platforms, and other types of software failures we are
optimistic that it will be influential in the design of future
debugging and diagnostic tools in software development.

ACKNOWLEDGEMENTS
This work was supported by the National Science
Foundation under NSF grant IIS-0329090 and the EUSES
consortium under NSF grant ITR CCR-0324770. The first
author was also supported by NDSEG and NSF Graduate
Fellowships. This work is the culmination of the first
author’s dissertation work and so he would like to thank all
of his former advisors, particularly Margaret Burnett, for
commitment to fostering undergraduate research.

REFERENCES
1. Abraham R., and Erwig M. 2005. Goal-directed

debugging of spreadsheets. IEEE Visual Languages and
Human-Centric Computing, 37-44.

2. Baowen X., Ju Q., Xiaofang Z., Zhongqiang W., & Lin
C. 2005. A brief survey of program slicing, IEEE
Software Engr. Notes, 30(2), 1-36.

3. Bothell D. 2004. ACT-R Environment Manual, Version
5.0, http://act-r.psy.cmu.edu/software/
EnvironmentManual.pdf.

4. Chalupsky H. and Russ T.A. 2002. WhyNot: Debugging
failed queries in large knowledge bases. Nat’l Conf. on
Artificial Intelligence, 870-877.

5. Clark P., Chaw SY, Barker K, Chaudhri V, Harrison P,
Fan J, John B, Porter B, Spaulding A, Thompson J, &
Yeh PZ 2007. Capturing and answering questions posed
to a knowledge-based system. Int’l Conf. on Knowledge
Capture, 63-70.

6. Ernst M.D., Czeisler A., Griswold W.G., & Notkin D.
2000. Quickly detecting relevant program invariants.
Int’l Conf. on Soft. Engr. (ICSE), 449-458.

7. Gilmore D.J. 1992. Models of debugging, Acta
Psychologica, 78, 151-173.

8. Ko A.J. & Myers B.A. 2004. Designing the Whyline: a
debugging interface for asking questions about program

failures. ACM Conf. on Human Factors in Computing
Systems (CHI), 151-158.

9. Ko A.J., Myers B.A., Coblenz M. & Aung H.H. 2006.
An exploratory study of how developers seek, relate,
and collect relevant information during software
maintenance tasks. IEEE Trans. on Soft. Engr., 32(12),
971-987.

10. Ko A.J., Myers B.A., Chau D.H. 2006. A linguistic
analysis of how people describe software problems.
IEEE Visual Languages and Human-Centric
Computing, 127-134.

11. Ko A.J. DeLine R., & Venolia G. 2007. Information
needs in collocated software development teams. Int’l
Conf. on Soft. Engr. (ICSE), 344-353.

12. Ko A.J. 2008. Asking and answering questions about the
causes of software behaviors. Human-Computer
Interaction Institute CMU-CS-08-122.

13. Ko A.J. & Myers B.A. 2008. Debugging reinvented:
asking and answering why and why not questions about
program behavior. Int’l Conf. on Soft. Engr (ICSE).,
301-310.

14. LaToza T.D., Garlan D., Herblseb J.D. & Myers B.A.
2007. Program comprehension as fact finding. ACM
Int’l Symp. on Foundations of Soft. Engr., 361-370.

15. Lewis B. 2003. Debugging backwards in time, Int’l
Workshop on Automated Debugging, 225-235.

16. Myers B.A., Weitzman D., Ko A.J., & Chau D. H. 2006.
Answering why and why not questions in user
interfaces. ACM Conf. on Human Factors in Computing
Systems (CHI), 397-406.

17. Robillard M.P., Coelho W., & Murphy G.C. 2004. How
effective developers investigate source code: An
exploratory study, IEEE Trans. on Soft. Engr., 30(12),
889-903.

18. Sillito J., Murphy G.C., & De Volder K. 2006.
Questions programmers ask during software evolution
tasks. ACM Int’l Symp. on Foundations on Soft. Engr.,
23-34.

19. Tassey G. 2002. The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology, RTI Project Number
7007.011.

20. Wagner E. & Lieberman H. 2003. An end-user tool for
e-commerce debugging. Int’l Conf. on Intelligent User
Interfaces, 331-331.

21. Weiser M. 1982. Programmers use slices when
debugging, Communications of the ACM, 25(7),
446-452.

22. Zeller A. 2002. Isolating cause-effect chains from
computer programs. ACM Int’l Symp. on Foundations of
Soft. Engr., 1-10.

CHI 2009 ~ Software Development April 8th, 2009 ~ Boston, MA, USA

1578

